Sulpharsenites of Lend from the Binnenthal. ${ }^{1}$
 Part II.-Rathite.
 By R. H. Solly, M.A.
 (With Plate III.)
 [Read November 13th, 1900.]
 Rathite, 3 PbS. $2 \mathrm{As}_{3} \mathrm{~S}_{3}$.
 Literature.

Baumhauer, 1896, Zeits. Kryst. Min. XXVI, 593-602. Crystallography. with Analysis by Bömer. (Abstract Min. Mag. XI, 225.)
Jackson, 1900, Min. Mag. XII, 287. Analyses.
Crystallo!fraphy.
System: Rhombic. $a: b: c=0 \cdot 4782: 1: 0 \cdot 5112$.

TThese ratios are calculated from $010: 350=51^{\circ} 27^{\prime}$ and $010: 111=70^{\circ} 45^{\prime}$ measured on crystal No. 1 (see p. 81). A new orientation has been chosen for the crystals, so that the well-developed prism zone is vertical, and the cleavage plane, (001) of Baumhauer, becomes (010) to correspond with the cleavage of jordanite. The parametral plane has also been changed, chiefly on account of the pyramid planes. The corresponding forms being :-

Baumhauer	100	010	001	403	095	20.27 .0	20.27 .15
Solly	100	001	010	110	011	101	111

The axial ratios $a: b: c=0 \cdot 668099: 1: 1.057891$, as given by Baumhauer, become on recalculation $a: b: c=0 \cdot 4737: 1: 0 \cdot 5251$.

The crystallographic observations have been made on 25 crystals, obtained from the Lengenbach quarries, in the Binnenthal. The table on page 78 contains a list of 62 known forms, 37 of which have not been observed before.

The base (001) is very rare, and only present as a very narrow plane. The brachypinacoid (010) is always present. The macropinacoid (100)

[^0]is rare, though sometimes fairly well developed. The crystals are always elongated along the Z axis. In the prism-zone (320), (340), (120) and (380) are characteristically well developed planes. The brachydome (011) is often largely developed and finely striated parallel to the X axis. The macrodome (101) is sometimes largely developed and deeply furrowed parallel to its intersection with (111). 'The pyramid planes, though numerous on some crystals, are always small and brilliant.

LIST OF KNOWN FORMS.

			$\begin{aligned} & \text { O. } \\ & \frac{1}{5} \\ & \text { in } \end{aligned}$	灾		$\begin{aligned} & \stackrel{\rightharpoonup}{8} \\ & \text { En } \\ & \text { in } \end{aligned}$	烒	
a	100	\cdots	5	250	.	$\frac{8}{3} k$	083	
b	010	001	${ }_{3}^{2} r$	370		${ }_{3}$	073	045
c	001	..	$\frac{9}{4}$	490	7.0.12	$\frac{9}{3} k$	095	
h	101	.	$2 r$	120	203	$\dagger 7 k$	074	
${ }_{8}^{80} r$	3.80 .0	.	$\frac{7}{4} r$	470	.	${ }_{3}^{5} k$	053	0.11 .10
18\%	1.18 .0	.	$\frac{5}{3} r$	350	405	${ }_{3}^{4} h$	048	..
11%	1.11.0	.	$\frac{4}{3} r$	340	101	k	011	
$10 r$	1.10 .0	.	r	110	403	${ }_{1}^{1} 10 k$	0.10 .11	021
$9 r$	190	107	$\frac{8}{7} s$	870	302	${ }_{6}$	056	
$8 r$	180	106	$\frac{3}{2} s$	320	201	$\frac{1}{3} k$	013	0.16.3
${ }_{3}^{22} r$	3.22 .0	2.0.11	$2 s$	210		${ }_{3}^{11} q$	3.11 .3	
$7 r$	170		3 s	310	401	$3 q$	131	
$\frac{20}{3} r$	3.20 .0	105	$4 s$	410	\ldots	$\underline{2}$	252	
$6 r$	160	209	$\frac{9}{2} 8$	920	601	79	373	.
${ }_{3} 17$	3.17 .0	8.0.35	78	710	..	39	353	.
${ }_{\frac{1}{3} 6}{ }^{3}$	3.16 .0		$8 s$	810		p	111	
$\stackrel{3}{3} \boldsymbol{4} r$	3.14 .0	207	$\dagger 15 k$	0.15 .1	.	$3 t$	313	.
$4{ }^{\circ}$	140	103	$7 k$	071		$5 t$	515	
${ }_{\frac{1}{3}}^{11}$	3.11.0	23.0 .66	$5 k$	051		$2 p$	21.1	.
${ }^{10} 8$	3.10 .0	205	$\frac{7}{2} k$	072		$2 m$	122	
$3 r$	130		$3 k$	031	-•	$\frac{3}{2} w$	132	\cdots
$8{ }_{3}$	380	102						

\dagger Twin planes, not found as faces.
The colour is lead-grey, but sometimes steel-grey, due probably to the inclusion of minute crystals of iron pyrites. Sometimes beautifully tarnished like jordanite. Streak chocolate colour. Opaque. Very perfect cleavage parallel to $(010)^{1}$; also a parting parallel to (100). Fracture conchoidal. Hardness 3. Specific gravity $5 \cdot 412$, also $5 \cdot 421$: Baumhauer found $5 \cdot 32$. It is sometimes intimately associated with sartorite. The only known locality is the bed of the Lengenbach, Binnenthal.

[^1]Five different habits have been observed :-
I. Small, very brilliant lead-grey crystals, highly modified, showing little or no twinning. Fig. 1, Plate III.
II. Stout crystals of typical rhombic habit; (010) (011) (101) and prism faces are largely developed. Colour lead-grey to steel-grey. The most characteristic features of this habit are the numerous twin lamellæ and the parting parallel to (100). Analysed by Jackson (loc. cit. No. 13). This habit resembles Baumhauer's crystals, I and VI? Figs. 2 and 3.

TABLE OF CALCULATED ANGLES.

Zone [010, 100]. $010,3.80 .0=4^{\circ} 29^{\prime}$ - 1.18. $0=6371{ }^{1}$, 1.11.0 = 1046 , 1.10.0=1149 , $190=135$, $180=1439$, $3,22.0=1555$,${ }_{3.20 .0}=1638$ $3.20 .0=1725$ $160=1913$, $3.17 .0=20151$, 3.17. $=201.16 .0=2124 \frac{1}{2}$, $3.14 .0=248 . \frac{1}{2}$, $140=2736$, $3.11 .0=2942$, $3.10 .0=326$ - $130=3452 \frac{1}{6}$, $370=4152$, $490=4254$ $\begin{aligned}, ~ & 120=4616] \\ 470 & =504\end{aligned}$, $350=5127^{2}$, $340=5729$		Zone [010, 101]. $010,3.11 .3=37^{\circ} 591^{\prime}$ - $131=4340^{\circ}$ - $252=4853$ - $373=5049 \frac{1}{2}$, $353=5948$ - $111=7045$, $313=8321 \frac{1}{2}$, $515=860^{2}$ $101=90 \quad 0$ Zone 1010, 102\rceil. 010, $132=5556$ $122=6544$ Zone [100, 011$]$. 100, $\begin{aligned} 211 & =27 \mathrm{A3} \\ 111 & =4625\end{aligned}$, $122=6433$, $011=900$ 010 , $2 \ddot{i}=77 \ddot{4} 7$ $100, \quad 101=43 \quad 5 \frac{1}{2}$ 001, $211=6532$, $111=4950$, $353=53482$ - $122=3629$, $373=581 \frac{1}{2}$ - $132=43 \quad 4$, $131=6151$, $3.11 .3=658$

III. Flat rhombic prisms, with narrow (010) and well developed brachydomes. Exhibiting twin lamelle, but not so numerous or so well marked as in habit II. Analysed by Jackson (No. 11). Fig. 4.
IV. Large rough crystals with splendid (010) cleavage; no twin lumeller ; of a dark steel-grey colour; usually mistaken for dufrenoysite. Similar to crystals II and III of Baumhauer. Analysed by Jackson (No. 12).
V. Rounded prisms roughly terminated, with very numerous fine twin
lamellæ ; of a lead-grey colour sometimes beantifully tarnished. Similar to crystal IV of Baumhauer. Fig. 5.

Twin laws.
I. Twin plane (074).

This twinning is only indicated by numerous very fine twin lamellæ.
II. Twin plane (0.15.1).

This is rare as a juxtaposed twin (Fig. 3), but fairly common as shown by small blade shaped prisms grown on the prism of the principal crystal. Two twinned crystals, as shown in Fig. 2 and in Baumhaner's Fig. 2, have been observed forming a triplet. The planes (074) (0.15.1) are not developed on any of the crystals.

Baumhauer, in his description of rathite, discusses the following possible causes of the fine striæ.
(a) Are the layers due only to parallel growth?
(b) Are the layers due to twin growth?
(c) Are the layers due to alternate banding of two isomorphous substances?

On account of the analysis obtained by Bömer, Baumhauer considered that the fine strix are due to alternate banding of $\mathrm{PbAsS}_{: 3}$ and PbSbS_{3} in the proportion of five molecules of the former to one of the latter. Jackson, out of five analyses of different rathite crystals, only once found any antimony (0.43 per cent.), while Bömer made one analysis and found 4.53 per cent. of antimony. I think there can be no doubt that the true composition of rathite is expressed by the formula $3 \mathrm{PbS} .2 \mathrm{As} \mathrm{S}_{3}$, and therefore the chemical composition has nothing to do with the fine striæ.

Are the layers then parallel growths or twin growths? Parallel layers would require some impurity betweon each layer, but Jackson did not find any difference in the chemical composition between crystals showing the lamellar structure and those not showing it. Parallel layers, as a rule, are uneven in thickness, and pass through the whole crystal. Now, these layers are remarkable for their cven thickness, and do not always sprend through the whole crystal or exhibit a pseudocleavage parallel to the layers. In the juxtaposed twin, described on page 83 , one crystal shows lamellar structure, while in the other it is absent.

I therefore consider that the fine striæ are caused by twin lamellæ parallel to (074).

Baumhauer points out the close crystallographic relation between rathite and dufrenoysite. I shall in my concluding paper on this group discuss the morphotropic relationship of the whole group.

There is a specimen of rathite labelled "arsenomelane" in the Museum of Practical Geology, London. The name " arsenomelane" was given by von Waltershausen, and he supplied material for the analyses of Uhrlaub and Nason : the results ${ }^{1}$ of these analyses agree closely with the formula $3 \mathrm{P}, \mathrm{S} .2 \mathrm{As}_{3} \mathrm{~S}_{3}$, and there can be little doubt that most of the "arsenomelane" found in 1855-7 was rathite.

Description of Specimens.
Habit I. Fig. 1, Plate III.
This habit was observed on eight small crystals. .One very small crystal, Fig. 1, was especially good.

Thirty-seven forms were determined, viz. :-
$a, b, \frac{40}{3} r, 18 r, 11 r, 9 r, \frac{22}{3} r, 6 r, \frac{14}{3} r, 4 r, \frac{10}{3} r, 3 r, \frac{8}{3} r, \frac{7}{3} r, \frac{9}{4} r, 2 r, \frac{7}{4} r, \frac{5}{3} r$, $\frac{4}{3} r, r, \frac{3}{3} s, 2 s, 3 x, 4 s, 7 s, \frac{7}{3} k, \frac{5}{3} k, k, \frac{11}{3} 4,3 q, \frac{5}{3} \psi, \frac{7}{3} \psi, \frac{5}{3} 4, p, 2 p, 2 m, \frac{3}{2} \pi$.

Calculated.		Measured.	
010, $3.80 .0=4^{\circ} 29^{\prime}$...	$4^{\circ} 27^{\prime}$ to $4^{\circ} 31^{\prime}$	narrow plane
, $1.18 .0=637 \frac{1}{2}$...	635 to 640	,'
, $1.11 .0=1046$...	1044 to 1047	,
, $190=135$		$13 \quad 2$ to 135	"
, $3.24 .0=1555$...	1552 to 1556	,
, $160=1913$...	1911 to 1914	,
, $3.14 .0=24 \quad 8 \frac{1}{3}$.	$24 \quad 6$ to 248	"
, $140=2736$...	2732 tu 2738	"
, 3.10.0 = 326	..	$34 \quad 3$ to 329	
, $130=3452 \frac{1}{2}$	\ldots	3452 to 3453	
, $380=386 \frac{1}{2}$	\cdots	$38 \quad 6$ and $38 \quad 7$	fairly large plane
, $370=4152$		4150 to 4152	narrow plane
, $490=4254$.	4251 to 4257	
, $120=4616$.	...	4616 and 4618	large plane
, $470=504 \frac{1}{2}$.	$50 \quad 2$ to 507	narrow plane
, $350=5127$	-	5127	fairly large plane
, $340=5729$...	5730 and 5732	large plane
, $110=6426 \frac{1}{3}$		$\mathbf{6 4 2 3}$ to $\mathbf{6 4} 28$	narrow plane
, $320=7219$.	7219	very large plane
, $210=7633$		7625 to 7640	narrow plane
, $310=8056 \frac{1}{2}$.	8054 to 8058	

[^2]| Calculated. | Measured. | | | |
| :---: | :---: | :---: | :---: | :---: |
| 010, $410=8311$ | ... | 83 | 8 to 8314 | narrow plane |
| , $710=865 \frac{1}{2}$ | \cdots | 86 | to 8610 | |
| $100=90 \quad 0$ | ... | 90 | | small plane |
| 010, $073=3959$ | ... | 395 | | narrow plane |
| $053=4984$ | ... | 498 | | |
| , $011=6255 \frac{1}{2}$ | - | 6257 | | small plane |
| 010, 3.11.3 $=3759 \frac{1}{2}$ | ... | 375 | 58 to 88 | |
| , $131=4840$ | ... | 438 | 38 to 4340 | |
| , $353=5948$ | ... | 594 | 48 to 5950 | |
| , $111=7045$ | ..' | 704 | 44 to 7046 | |
| 100, $111=4625$ | ... | 462 | 24 to 4626 | |
| , $122=6438$ | ... | 643 | 30 to 6436 | |
| , 011 $=900$ | ... | 895 | 58 to 901 | |
| 320, $111=4048$ | ... | 404 | | |
| , $353=413$ | ... | 41 | | |
| 340,. $111=4039 \frac{1}{2}$ | \ldots | 404 | | |
| , $353=3687$ | | 363 | | |
| 350, $111=4152 \frac{1}{2}$ | ... | 415 | | |
| , $353=3611 \frac{1}{2}$ | | 361 | | |
| 120, $111=4326 \frac{1}{2}$ | ... | 483 | | |
| , $853=3680$ | ... | 368 | | |

The forms $211,132,373,252,131,3.11 .3,122$ were determined by the following zones:-

$$
\begin{array}{lr}
211[100,111][181, \overline{1} 20] . & 131[010,111][320, \overline{8} 53] . \\
132[131,001][010,122] . & 3.11 .3[010,111][340, \overline{1} 11] . \\
378[010,111][320, \overline{1} 11] . & 122[100,111][340, \mathrm{~s} 53] . \\
252[010,111][130,122] . &
\end{array}
$$

There are also other minute pyramid planes which give no distinct reflections.

Habit II. Figs. 2 and 3.
This habit was observed on nine crystals ; (010) (011) and (101) are largely developed, (010) is bright and smooth, (011) dull and finely striated parallel to the X axis, (101) with small (111) (318) (515) are rounded and deeply furrowed parallel to their mutual intersections, (320) (340) and (880) are largely developed.

Thirty-one forms were determined, viz. :-
$a, b, c, \frac{80}{3} r, 9 r, \frac{22}{3} r, \frac{17}{3} r, \frac{16}{3} r, \frac{14}{3} r, 4 r, \frac{10}{3} r, \frac{8}{3} r, 2 r$, $\frac{5}{3} r, \frac{4}{3} r, \frac{9}{2} s, 3 s, \frac{9}{2} s$, $7 s, 8 s, 7 k, 5 k, \frac{7}{2} k, 3 k, \frac{8}{3} k, \frac{7}{3} k, k, p, 3 t, 5 t, h$.

Calculated.
Measured.
$010,3.16 .0=21^{\circ} 24 \frac{1}{2}^{\prime} \quad$... $\quad 21^{\circ} 22^{\prime}$ to $21^{\circ} 25^{\prime}$ narrow plane
, $920=8856 \quad . . \quad 8352$ to 8358 ,"
, $810=8635 \quad . . \quad 8630$ to $8640 \quad$,"
, $071=1537 \quad$... 1534 to $1540 \quad$,
, $051=2122 \quad$... 2120 to 2126 ,
, $072=2912 \quad$... 2914
*
, $081=336 \frac{1}{2} \quad . . \quad 33 \quad 9$ to $3810 \quad$,"
, $083=3616 \quad$... 8612 to 3618 ,
, $813=8321 \frac{1}{2} \quad$... 88 to 8330 rounded plane
, $515=860 \quad$... 85 to 86
, $101=90 \quad 0 \quad \ldots \quad 90$ about
The crystals belonging to this habit are always characterised by numerous twin lamellæ, according to law I (twin plane (074)).

$$
\begin{array}{rrr}
\text { Calculated. } & \text { Measured. } \\
010,074=48^{\circ} 11^{\prime}
\end{array} \ldots \quad 47 \frac{1}{2}^{\circ} \text { to } 48 \frac{1}{2}^{\circ}
$$

This angle was determined under a microscope fitted with cross wires and graduated circle. The crystals break parallel to (100), on which surface the lamellæ are well seen.

Very often small blade-shaped prisms are grown in twinned position on the prism planes of the principal crystal, according to law II (twin plane (0.15.1)). Triplets were also observed, according to law II (Fig. 2).

$$
\begin{array}{llc}
& \text { Calculated. } & \\
\text { Measured. } \\
(\overline{010}),(\overline{010})=Z \bar{Z}=14^{\circ} 52^{\prime} & \cdots & 15^{\circ} \\
(\overline{010}),(\overline{\overline{010}})=\overline{Z \bar{Z}}=2944 & \cdots & \mathbf{3 0}
\end{array}
$$

The above angles were determined under a microscope by means of cross wires and a graduated circle.

One twinned crystal (Fig. 3) requires special notice. It is a juxtaposed twin, according to law II, and exhibits on the fractured surface of one crystal numerous twin lameltæ, according to law I.

The prisms are both well developed with (340) very large. On one crystal (072) gives a good reflection, (083) poor, and (073) rounded. The zone $\{010,101\rceil$ is rounded and deeply furrowed.

Calculated.

$$
\begin{array}{rcc}
010, \overline{010} & =14^{\circ} 52^{\prime} & \cdots \\
, 072 & =2912 & \cdots \\
010, \overline{010}=1452 & \cdots & 2914 \\
0 & 1450
\end{array}
$$

This crystal consists of a number of similar crystals not quite parallel, as is seen when measuring round the prism zone.

Habit III. Fig. 4.
This habit was observed on three crystals. (010) is a narrow plane, while (320), (340), (120) and (380) are well developed. The brachydomes are well developed, and give good reflections. The twin lamelle are not nearly so numerous as in habit II, and the parting plane (100) is alusent.

Forty forms were observed, viz. :--

$$
a, b, h, \frac{80}{3} r, 18 r, 11 r, 10 r, 8 r, \frac{22}{3} r, 7 r, \frac{20}{3} r, 6 r, \frac{17}{3} r, \frac{16}{3} r, \frac{14}{3} r, 4 r, \frac{11}{3} r,
$$ $\frac{1}{3} 0 r, 3 r, \frac{8}{3} r, \frac{5}{3} r, \frac{7}{3} r, \frac{9}{4} r, 2 r, \frac{7}{4} r, \frac{5}{3} r, \frac{4}{3} r, r, \frac{9}{2} s, 2 s, 4 s, 7 s, 7 k, 3 k, \frac{7}{3} k, \frac{9}{5} k, \frac{5}{3} k$, $\frac{1}{3} k, k, \frac{5}{6} h$.

Calculated. $010,1.10 .0=11^{\circ} 49^{\prime}$	\ldots	$\begin{aligned} & \text { Measured. } \\ & 11^{\circ} 45^{\prime} \text { to } 11^{\circ} 50^{\prime} \end{aligned}$	narrow plane
, $180=1439$	\ldots	1435 to 1445	,.
$170=1638$	\ldots	1635 to 1645	.
, $3.20 .0=1725$		1720 tu 1743	,
- $3.17 .0=2015 \frac{3}{2}$	\ldots	2010 to 2020	"
, 3.11.0=29 42	...	2940 to 2945	,
, $250=3954 \frac{1}{2}$		3950 to 40	"
320, $\overline{3} 20=3522$...	3522	sharp image
, $340=1450$	\ldots	1450	,,
$340,350=62$		6 2	"
350, $120=510 \frac{1}{8}$		$\bigcirc 10$	"
010, $071=1537$	\cdots	1536	good image
, $031=336 \frac{1}{2}$	\ldots	33 6	,,
, $073=3959$	\ldots	3958	
, $095=4723$	\ldots	4720 to 4725	poor image
, $053=4934$.	4935	good image
, $048=5620 \frac{1}{2}$	\ldots	5625	poor image
, $011=6255 \frac{1}{2}$...	6255	fair image
, $056=6655 \frac{1}{2}$...	67	poor image

Habit IV.
This habit was observed on some large rough crystals given to me by Dr F. Grünling, of Munich. They resemble in form habit II, bat exhibit no twin lamellæ. 'These crystals are of a dark stecl-grey colour with splendid cleavage parallel to (010). On breaking up the crystals for analvsis minute crystals were found lining some of the cavities. Some of
the planes in the prism and brachydome zones were bright and large enough to measure.

Seventeen forms were observed, viz. :-

$$
b, 18 r, \frac{22}{3} r, \frac{16}{3} r, \frac{14}{3} r, 8 r, \frac{5}{2} r, 2 r, \frac{5}{3} r, \frac{3}{3} s, 2 s, 3 s, 5 k, \frac{7}{2} h, 3 k, \frac{8}{3} h, \frac{7}{3} h .
$$

Habit V. Fig. 5.
This habit was observel on onc crystal. The crystal is in a cavity in the dolomite. It is a rounded prism with no definite terminations, with well-marked numerous twin lamellæ on the prism faces; only approximate measurements could be obtained, but they conform with twin law I. It is identical in appearance to crystal IV of Baumhauer. An untarnished prism of jordanite may easily be mistaken for a rathite of this habit.

[^0]: 1 Part I, General Description and Chemical Analyses, with a Crystallographic Account of Jordanite. Min. Mag. 1900, XII, 282.297.

[^1]: ${ }^{1}$ See Min. Mug. Vol. XII, 286,

[^2]: ${ }^{1}$ Min. Mag. XII, pp. 283 and 287, Nos. 17-20.

