Some applications of the Gnomonic Projection to Crystallography.

By HAROLD HILTON, M.A. Fellow of Magdalen College, Oxford.

[Communicated by Professor Miers, and read November 15, 1904.]

1. LET the crystallographic axes OA, OB, OC of a crystal, whose axial ratios are a:b:c, meet a plane p in A, B, C. Let a plane through O, parallel to a crystal-face whose indices are h, k, l,

Fig. 1.

meet p in the line f (fig. 1); and let the line OF, perpendicular to the face, meet p at the point F. Let the perpendicular from O on p meet it in V, and let OV = m. Let

$$VOA = a$$
, $VOB = \beta$, $VOC = \gamma$, $FOA = \lambda$, $FOB = \mu$, $FOC = \nu$,
 $VOF = \theta$.

Then $h: k: l = a \cos \lambda : b \cos \mu : c \cos \nu$.

Let $FV \operatorname{cut} f$ in N; then FN is perpendicular to f and $FV \cdot VN = m^2$.

Let the perpendiculars from A, B, C on f be p_1, p_2, p_3 . Then

$$p_1 = VN + VA \cos AVF$$

But

$$VN = m^2 \div FV = m \cot \theta, \quad VA = m \tan a,$$

 $\cos A \, VF = (\cos \lambda - \cos a \, . \, \cos \theta) \, \csc a \, . \, \csc \theta,$

by spherical trigonometry.

$$\therefore \quad p_1 = m \cos \lambda \cdot \sec a \cdot \operatorname{cosec} \vartheta,$$

and

 $\therefore \quad p_1 a \cos a : p_2 b \cos \beta : p_3 \epsilon \cos \gamma = h : k : l.$

Hence, if we take ABC as triangle of reference in the plane p and suitable triliteral coordinates (xyz), the equation of the line f is

$$hx + ky + lz = 0.$$

The indices of the edge in which the faces (hkl) and (h'k'l') intersect are the same as the coordinates of the intersection of the lines whose triliteral equations are

$$hx + ky + lz = 0$$
 and $h'x + k'y + l'z = 0$.

Therefore the line through O parallel to the edge [HKL] meets p in the point (HKL).

Let the perpendiculars from O to the faces (100), (010), (001) meet pin A'B'C'. Then F is the pole of f, A of B'C', B of C'A', C of A'B' with respect to a circle of radius $\sqrt{-m^2}$ whose centre is V^1 . Let q_1, q_2, q_3 be the perpendiculars from F on the sides of the triangle A'B'C'. Produce AV to cut B'C' in R. Then

$$q_1 = VR + VF \cos A VF = m \cos \lambda$$
, cosec a. sec θ

as before. Therefore

$$q_1 a \sin a : q_2 b \sin \beta : q_3 c \sin \gamma = h : k : l$$

Hence if we form the gnomonic projection on p of the poles and zones of the crystal which lie on a sphere of radius m whose centre is V, and if we choose a suitable triangle of reference on p and suitable triliteral coordinates, then the point (hkl) is the projection of the pole of the face (hkl) and Hx + Ky + Lz = 0 is the projection of the zone [HKL].

The gnomonic projection of the poles and zones on p is the reciprocal polar with respect to a circle of radius $\sqrt{-m^2}$, whose centre is V, of the figure formed by drawing through O planes parallel to the faces cutting p in lines, and lines parallel to the edges cutting p in points.

2. We shall now take illustrations of the use of these theorems.

The anharmonic ratio of four cozonal faces $(h_1k_1l_1)$, $(h_2k_2l_2)$, $(h_sk_sl_s)$, $(h_4k_4l_4)$ is evidently equal to the anharmonic ratio of the range formed by the gnomonic projection of their poles. Now these four poles are the points $(h_1k_1l_1)$, &c., the triangle of reference being suitably chosen, and therefore the anharmonic ratio of the faces is equal to the anharmonic

¹ Since in a plane triangles reciprocal with respect to a circle are homologous, we have incidentally proved that the arcs joining corresponding vertices of a spherical triangle and its polar triangle are concurrent, and that the intersections of corresponding sides of the two triangles lie on a great circle.

ratio of the pencil formed by the lines joining these points to A', i. e., by the lines $yl_1 = zk_1$, &c. Therefore the anharmonic ratio of the four faces

$$= \left(\frac{k_{3}}{l_{3}} - \frac{k_{1}}{l_{1}}\right) \left(\frac{k_{4}}{l_{4}} - \frac{k_{2}}{l_{2}}\right) \div \left(\frac{k_{4}}{l_{4}} - \frac{k_{1}}{l_{1}}\right) \left(\frac{k_{3}}{l_{3}} - \frac{k_{3}}{l_{2}}\right) \\= \left(k_{1}l_{3} - k_{3}l_{1}\right) \left(k_{2}l_{4} - k_{4}l_{2}\right) \div \left(k_{1}l_{4} - k_{4}l_{1}\right) \left(k_{2}l_{3} - k_{3}l_{2}\right).$$

Again project on to a plane perpendicular to an *n*-al rotation-axis of the crystal. Let A_1 be the projection of the pole of a face; then $A_2, A_3, A_4, \ldots, A_n$ are also projections of poles, $A_1A_2 \ldots A_n$ being a

Fig. 2.

regular *n*-sided polygon (fig. 2). Take $A_1A_2A_3$ as triangle of reference. Then the areal coordinates of A_4 and A_n are

$$\frac{A_{2}A_{3}A_{4}}{A_{1}A_{2}A_{3}}, \ \frac{A_{3}A_{1}A_{4}}{A_{1}A_{2}A_{3}}, \ \frac{A_{1}A_{2}A_{4}}{A_{1}A_{2}A_{3}} \text{ and } \ \frac{A_{2}A_{3}A_{n}}{A_{1}A_{2}A_{3}}, \ \frac{A_{3}A_{1}A_{n}}{A_{1}A_{2}A_{3}}, \ \frac{A_{1}A_{2}A_{n}}{A_{1}A_{2}A_{3}}, \ \frac{A_{1}A_{2}A_{n}}{A_{1}A_{2}A_{n}}, \ \frac{A_{1}A$$

But $A_3A_1A_4 = A_3A_1A_n$,

$$\therefore \quad \frac{A_2 A_3 A_n}{A_2 A_3 A_4} = \frac{A_1 A_2 A_4}{A_2 A_3 A_4} = \frac{A_1 A_4}{A_2 A_3} = 1 + 2 \cos \frac{2\pi}{n}$$

and

is rational. Therefore n = 2, 3, 4, or 6.

This proof may be readily extended to the case of symmetry-axes of the second sort (axes of alternating symmetry). It assumes neither the rationality of the anharmonic ratio of four cozonal faces nor the fact that the symmetry-axis is parallel to a possible edge.

3. Suppose we have *n* points in a plane, and suppose every pair of points joined by a straight line. Suppose that one of these lines passes through *r* of the points $P_1, P_2, \ldots, P_{r-1}, P_r$. Now if one of these points (P, say) is moved out of the line, the total number of lines is increased by (r-1); for the *r* lines $P_1 P_r, P_2 P_r, \ldots, P_{r-1} P_r, P_1 \ldots, P_{r-1}$ replace the

106

single line $P_1 ldots I_r$. If now P_{r-1} is also moved out of the line, the total number of lines is increased by (r-2) more lines, and so on. Suppose this process repeated until no line passes through more than two points; the number of lines is now $\frac{1}{2}n(n-1)$. Let u_r be the number of lines passing through r of the points and no more. Then we have

$$u_2 + u_3 + \dots + u_n = \frac{1}{2}n(n-1) - \sum_{n=1}^{n} \{(2+3+\dots+\overline{r-1})u_r\}$$

and therefore

Again, in the above let v_r be the number of points at which r lines intersect, so that

$$\Sigma v = n$$
 (ii).

Then the total number of lines would be

$$v_1 + 2v_2 + \dots + (n-1)v_{n-1}$$

if we reckoned each line through r points as equivalent to r lines. Therefore

$$v_1 + 2v_2 + \dots + (n-1)v_{n-1} = 2u_2 + 3u_3 + \dots + nu_n,$$

 \mathbf{or}

Combining (i), (ii), and (iii) we have

$$n = \sum_{2}^{n} r(v_{r-1} - u_r)$$
 and $n(n-2) = \sum_{2}^{n} r(ru_r - v_{r-1}).$

Suppose we have n lines in a plane, and suppose that every pair of lines intersects in a point. Let U_r be the number of points lying on r of the lines, and V_r the number of lines on which r points lie. Then by reciprocation

$$n(n-1) = \sum_{2}^{n} r(r-1) U_{r}, \quad \sum_{2}^{n} \{(r-1)V_{r-1} - rU_{r}\} = 0, \&c.$$

Using the gnomonic projection we deduce the following :---

If on a crystal with n faces (two parallel faces being considered equivalent to only a single face) there are u_r zones containing r faces and v_r faces lying in r zones ($\Sigma v = n$), then

$$n(n-1) = \sum_{2}^{n} r(r-1) u_{r}, \quad \sum_{2}^{n} \{(r-1) v_{r-1} - ru_{r}\} = 0,$$

$$\sum_{2}^{n} r(v_{r-1} - u_{r}), \quad \text{and} \quad n(n-2) = \sum_{2}^{n} r(ru_{r} - v_{r-1}).$$

¹ Another proof is given by E. von Fedorow, Abhandl. k. bayer. Akad. Wiss. München, Math. phys. Cl., 1900, vol. xx, p. 496.

Summary.

1. In the gnomonic projection of the poles of a crystal on any plane the projection of the pole of (hkl) is the point (hkl), and the projection of the zone [HKL] is Hx + Ky + Lz = 0, a suitable triangle of reference and suitable triliteral coordinates being taken.

2. By means of this theorem simple proofs of well-known crystallographic theorems may be obtained.

3. Some relations between the number (u_r) of zones of a crystal containing r faces, and the number of faces (v_r) lying in r zones may be found ; e.g.,

$$n(n-1) = \sum_{2}^{n} r(r-1) u_{r}, \quad \sum_{2}^{n} \{(r-1) v_{r-1} - r u_{r}\} = 0,$$

$$\Sigma v_{r} = n.$$

where

$$\Sigma v_r = n$$

University College, Bangor, North Wales.