Some applications of the Gnomonic Projection to Crystallography.

By Harold Hilton, M.A.
Fellow of Magdalen College, Oxford.
[Communicated by Professor Miers, and read November 15, 1904.]

1. ET the crystallographic axes $O A, O B, O C$ of a crystal, whose axial ratios are $a: b: c$, meet a plane p in A, B, C. Let a plane through O, parallel to a crystal-face whose indices are h, k, l,

Fig. 1.
meet p in the line f (fig. 1); and let the line $O F$, perpendicular to the face, meet p at the point F. Let the perpendicular from O on p meet it in V, and let $O F=m$. Let

$$
\begin{gathered}
V O A=a, V O B=\beta, \quad \nabla O C=\gamma, F O A=\lambda, F O B=\mu, F O C=\nu \\
V O F=\theta
\end{gathered}
$$

Then

$$
h: k: l=a \cos \lambda: b \cos \mu: c \cos \nu
$$

Let $F V$ cut f in N; then $F N$ is perpendicular to f and $F V . \nabla N=m^{2}$.
Let the perpendiculars from A, B, C on f be p_{1}, p_{2}, p_{3}. Then
But

$$
\begin{gathered}
p_{1}=V N+V A \cos A V F \\
V N=m^{2} \div F V=m \cot \theta, \quad V A=m \tan a \\
\cos A V F=(\cos \lambda-\cos a \cdot \cos \theta) \operatorname{cosec} a \cdot \operatorname{cosec} \theta
\end{gathered}
$$

by spherical trigonometry.

$$
\therefore \quad p_{1}=m \cos \lambda \cdot \sec a \cdot \operatorname{cosec} \theta,
$$

and $\quad \therefore \quad p_{1} a \cos a: p_{2} b \cos \beta: p_{3} e \cos \gamma=h: k: l$.
Hence, if we take $A B C$ as triangle of reference in the plane p and suitable triliteral coordinates ($x y z$), the equation of the line f is

$$
h x+k y+l z=0
$$

The indices of the edge in which the faces ($h k l$) and ($h^{\prime} k^{\prime} l^{\prime}$) intersect are the same as the coordinates of the intersection of the lines whose triliteral equations are

$$
h x+k y+l z=0 \quad \text { and } \quad h^{\prime} x+k^{\prime} y+l^{\prime} z=0
$$

Therefore the line through O parallel to the edge $[H K L]$ meets p in the point ($H K L$).

Let the perpendiculars from O to the faces (100), (010), (001) meet p in $A^{\prime} B^{\prime} C^{\prime}$. Then F is the pole of f, A of $B^{\prime} C^{\prime}, B$ of $C^{\prime} A^{\prime}, C$ of $A^{\prime} B^{\prime}$ with respect to a circle of radius $\sqrt{-m^{2}}$ whose centre is V^{1}. Let q_{1}, q_{2}, q_{3} be the perpendiculars from F on the sides of the triangle $A^{\prime} B^{\prime} C^{\prime}$. Produce $A V$ to cut $B^{\prime} C^{\prime}$ in R. Then

$$
q_{1}=V R+V F \cos A V F=m \cos \lambda \cdot \operatorname{cosec} a \cdot \sec \theta
$$

as before. Therefore

$$
q_{1} a \sin a: q_{2} b \sin \beta: q_{3} c \sin \gamma=h: k: l .
$$

Hence if we form the guomonic projection on p of the poles and zones of the crystal which lie on a sphere of radius m whose centre is V, and if we choose a suitable triangle of reference on \mathcal{P} and suitable triliteral coordinates, then the point ($h k l)$ is the projection of the pole of the face ($h k l$) and $H x+K y+L z=0$ is the projection of the zone [HKL].

The gnomonic projection of the poles and zones on p is the reciprocal polar with respect to a circle of radius $\sqrt{-m^{2}}$, whose centre is V, of the figure formed by drawing through O planes parallel to the faces cutting p in lines, and lines parallel to the edges cutting p in points.
2. We shall now take illustrations of the use of these theorems.

The anharmonic ratio of four cozonal faces $\left(h_{1} l_{1} l_{1}\right),\left(h_{2} k_{2} l_{2}\right),\left(l_{\mathrm{s}} k_{\mathrm{s}} l_{3}\right)$, ($h_{4} k_{4} l_{4}$) is evidently equal to the anharmonic ratio of the range formed by the gnomonic projection of their poles. Now these four poles are the points $\left(h_{1} k_{1} l_{1}\right), \& c$., the triangle of reference being suitably chosen, and therefore the anharmonic ratio of the faces is equal to the anharmonic

[^0]ratio of the pencil formed by the lines joining these points to A^{\prime}, i. e., by the lines $y l_{1}=z k_{1}$, \&c. Therefore the anharmonic ratio of the four faces
\[

$$
\begin{aligned}
& =\left(\frac{k_{3}}{l_{3}}-\frac{k_{1}}{l_{1}}\right)\left(\frac{k_{4}}{l_{4}}-\frac{k_{2}}{l_{2}}\right) \div\left(\frac{k_{4}}{l_{4}}-\frac{k_{1}}{l_{1}}\right)\left(\frac{k_{3}}{l_{3}}-\frac{k_{3}}{l_{2}}\right) \\
& =\left(k_{1} l_{3}-k_{3} l_{1}\right)\left(k_{2} l_{4}-k_{4} l_{2}\right) \div\left(k_{1} l_{4}-k_{4} l_{4}\right)\left(k_{2} l_{3}-k_{3} l_{2}\right) .
\end{aligned}
$$
\]

Again project on to a plane perpendicular to an n-al rotation-axis of the crystal. Let A_{1} be the projection of the pole of a face; then $A_{2}, A_{3}, A_{4}, \ldots, A_{n}$ are also projections of poles, $A_{1} A_{2} \ldots A_{n}$ being a

Fig. 2.
regular n-sided polygon (fig. 2). Take $A_{1} A_{2} A_{3}$ as triangle of reference. Then the areal coordinates of A_{4} and A_{n} are

$$
\frac{A_{2} A_{8} A_{4}}{A_{1} A_{2} A_{3}}, \frac{A_{3} A_{1} A_{4}}{A_{1} A_{2} A_{3}}, \frac{A_{1} A_{2} A_{4}}{A_{1} A_{2} A_{3}} \text { and } \frac{A_{2} A_{3} A_{n}}{A_{1} A_{2} A_{3}}, \frac{A_{3} A_{1} A_{n}}{A_{1} A_{2} A_{3}}, \frac{A_{1} A_{2} A_{n}}{A_{1} A_{2} A_{3}} .
$$

But $A_{3} A_{1} A_{4}=A_{3} A_{1} A_{n}$,
and

$$
\therefore \quad \frac{A_{2} A_{9} A_{n}}{A_{2} A_{3} A_{4}}=\frac{A_{1} A_{2} A_{4}}{A_{2} A_{3} A_{4}}=\frac{A_{1} A_{4}}{A_{2} A_{3}}=1+2 \cos \frac{2 \pi}{n}
$$

is rational. Therefore $n=2,3,4$, or 6 .
This proof may be readily extended to the case of symmetry-axes of the second sort (axes of alternating symmetry). It assumes neither the rationality of the anharmonic ratio of four cozonal faces nor the fact that the symmetry-axis is parallel to a possible edge.
3. Suppose we have n points in a plane, and suppose every pair of points joined by a straight line. Suppose that one of these lines passes through r of the points $P_{1}, P_{2}, \ldots, P_{r-1}, P_{r}$. Now if one of these points (P_{r} say) is moved out of the line, the total number of lines is increased by $(r-1)$; for the r lines $P_{1} P_{r}, P_{2} P_{r}, \ldots, P_{r-1} P_{r}, P_{1} \ldots P_{r-1}$ replace the
single line $P_{1} \ldots F_{r}$. If now P_{r-1} is also moved out of the line, the total number of lines is increased by $(r-2)$ more lines, and so on. Suppose this process repeated until no line passes through more than two points; the number of lines is now $\frac{1}{2} n(n-1)$. Let u_{r} be the number of lines passing through r of the points and no more. Then we have

$$
u_{2}+u_{3}+\ldots+u_{n}=\frac{1}{2} n(n-1)-\sum_{2}^{n}\left\{(2+3+\ldots+\overline{r-1}) u_{r}\right\}
$$

and therefore

$$
n(n-1)=\sum_{2}^{n} r(r-1) u_{r} . \quad . \quad . \quad . \quad(\mathrm{i})^{1}
$$

Again, in the above let v_{r} be the number of points at which r lines intersect, so that

$$
\begin{equation*}
\Sigma v=n \tag{ii}
\end{equation*}
$$

Then the total number of lines would be

$$
v_{1}+2 v_{2}+\ldots+(n-1) v_{n-1}
$$

if we reckoned each line through r points as equivalent to r lines. Therefore

$$
v_{1}+2 v_{2}+\ldots+(n-1) v_{n-1}=2 u_{2}+3 u_{3}+\ldots+n u_{n}
$$

or

$$
\begin{equation*}
\sum_{2}^{n}\left\{(r-1) v_{r-1}-r u_{r}\right\}=0 \tag{iii}
\end{equation*}
$$

Combining (i), (ii), and (iii) we have

$$
n=\sum_{2}^{n} r\left(v_{r-1}-u_{r}\right) \quad \text { and } \quad n(n-2)=\sum_{2}^{n} r\left(r u_{r}-v_{r-1}\right) .
$$

Suppose we have n lines in a plane, and suppose that every pair of lines intersects in a point. Let U_{r} be the number of points lying on r of the lines, and V_{r}, the number of lines on which r points lie. Then by reciprocation

$$
n(n-1)=\sum_{2}^{n} r(r-1) U_{r}, \quad \sum_{2}^{n}\left\{(r-1) V_{r-1}-r U_{r}\right\}=0, \& c .
$$

Using the gnomonic projection we deduce the following :-
If on a crystal with n faces (two parallel faces being considered equivalent to only a single face) there are u_{r} zones containing r faces and v_{r}. faces lying in r zones ($\Sigma v=n$), then

$$
\begin{gathered}
n(n-1)=\sum_{2}^{n} r(r-1) u_{r}, \quad \sum_{2}^{n}\left\{(r-1) v_{r-1}-r u_{r}\right\}=0, \\
\sum_{2}^{n} r\left(v_{r-1}-u_{r}\right), \quad \text { and } \quad n(n-2)=\sum_{2}^{n} r\left(r u_{r}-v_{r-1}\right) .
\end{gathered}
$$

[^1]
Summary.

1. In the gnomonic projection of the poles of a crystal on any plane the projection of the pole of $(\hbar k l)$ is the point $(h k l)$, and the projection of the zone $[H K L]$ is $H x+K y+L z=0$, a suitable triangle of reference and suitable triliteral coordinates being taken.
2. By means of this theorem simple proofs of well-known crystallographic theorems may be obtained.
3. Some relations between the number $\left(u_{r}\right)$ of zones of a crystal containing r faces, and the number of faces $\left(v_{r}\right)$ lying in r zones may be found ; e.g.,

$$
n(n-1)=\sum_{2}^{n} r(r-1) u_{r}, \quad \sum_{2}^{n}\left\{(r-1) v_{r-1}-r u_{r}\right\}=0,
$$

where

$$
\Sigma v_{r}=n
$$

University College, Bangor, North Wales.

[^0]: ${ }^{1}$ Since in a plane triangles reciprocal with respect to a circle are honologous, we have incidentally proved that the arcs joining corresponding vertices of a spherical triangle and its polar triangle are concurrent, and that the intersections of corresponding sides of the two triangles lie on a great circle.

[^1]: ${ }^{1}$ Another proof is given by E. von Fedorow, Alhandl. k. bayer. Akad. Wiss. Miuchen, Math.phys. Cl., 1900, vol. xx, p. 496.

