Notes on some Binnenthal minerals (Ilmenite, Seligmannite, Marrite, dec.)

By R. H. Soldy, M.A.

[Read November 14, 1905.]

Ilmenite. ${ }^{1}$

S^{o}OME very brilliant and well-modified crystals of ilmenite, recently found in the neighbourhood of the Ofenhorn, are of interest in that they exhibit a well-marked parallel hemihedrism and show the presence of a number of new forms. Although constantly sought for, it is more than fifteen years since crystals of this mineral were last found in the Binnenthal. The crystals described by H. Bücking ${ }^{2}$ in 1877 appear to differ in habit from those of the new fiud.

The crystals now described are attached to a matrix of mica-schist, and the associated minerals are quartz, adularia, magnetite, and mica. The plane (111) of the ilmenite is largely developed, and is finely striated parallel to its edges of intersection with the planes of the form $n=\{31 \mathrm{I}\}$

[^0]| Form. | Indices. | | Calculated Values. | | Observed Means. | | | Limits of Observations. | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Rhombohedral. | Hexagonal. | Azimuth. | Distance. | Azimuth. | Distance. | | Azimuth. | | Distance. |
| r | 317 | 4071 | $30^{\circ} 0^{\prime}$ | $81^{\circ} 6 \frac{1}{2}^{\prime}$ | $30^{\circ} \quad 0^{\prime}$ | $81^{\circ} 5^{\prime}$ | 1 | | | |
| d | 411 | 1012 | | 3838 | | $38 \quad 30$ | 1 | | | |
| q | 331 | 6241 | $1053 \frac{1}{2}$ | 8316 | 1040 | 839 | 3 | $10^{\circ} 34^{\prime}-10^{\circ} 45^{\prime}$ | 83° | $4^{\prime}-83^{\prime} 13^{\prime}$ |
| k | 452 | 3121 | , , ," | 7642 | " " | $76 \quad 41$ | 2 | " ", ", | | 40, 7642 |

The forms present are the following, the six in the second column being new for ilmenite:-

$$
\begin{array}{rlrl}
c & =\{111\} & =\{0001\} & \\
a=\{101\}=\{1120\} & & X=\{592\}=\{0.7 .7 \cdot 20\} \\
r & =\{100\}=\{1011\} & & \gamma=\{21 I\}=\{1232\} \\
s & =\{11 I\}=\{0221\} & \delta=\{531\}=\{2467\} \\
n & =\{31 J\}=\{2243\} & & \beta=\{3 \cdot 8 \cdot 13\}=\{5 \cdot 5 \cdot 10 \cdot 24\} \\
& & h=\{312\}=\{4150\}
\end{array}
$$

The forms n, X, γ, δ, and β are hemihedral with parallel faces, leeing rhombohedra of the third order or hemi-scalenohedra. The faces X, n, and β lie in the zone [ca], X and n being on one side of c and β on the other side. The face a lies between the faces c and s in the zone [cr]: γ lies between n and s, and δ is near to this in the zone [$c \delta \gamma]$. On the crystal (fig. 1) which was measured there are also some very small faces between c and n, and between c and s. The angles observed on this: crystal are given below.

Fig. 1.-Ilmenite.

Calculated. ${ }^{1}$
$\left[\begin{array}{ll}c r=57^{\circ} 58 \frac{1^{\prime}}{2} & 57^{\circ} 58^{\prime}, 57^{\circ} 59^{\prime}, 57^{\circ} 58^{\prime} . \\ c a=2914 & 29^{\circ} 12^{\prime}, 29^{\circ} 10^{\prime}, 29^{\circ} \text { (max. light). } \\ c s=7238 & 72^{\circ} 38^{\prime}, 72^{\circ} 38^{\prime}, 72^{\circ} 38^{\prime} . \\ c c^{\prime}=1800 & 180^{\circ} 0^{\prime} .\end{array}\right.$
$\left[\begin{array}{cll}c n=6133 & 61^{\circ} 33^{\prime}, 61^{\circ} 34^{\prime}, 61^{\circ} 31^{\prime}, 61^{\circ} 33^{\prime} . \\ c X=7450 \frac{1}{2} & 74^{\circ} 50^{\prime}, 74^{\circ} 51,75^{\circ} \text { (max. light). } \\ c a=900 & 90^{\circ} \text { (max. light). } \\ c \beta=2958 \frac{1}{2} & 30^{\circ} 0^{\prime}, 29^{\circ} 59^{\prime}, 29^{\circ} 57^{\prime}, 30^{\circ} \text { (poor image). } \\ {\left[\begin{array}{cc}c \delta & 5023 \frac{1}{2} \\ c \gamma & 50^{\circ} 22^{\prime}, 50^{\circ} 30^{\prime} \text { (faint), } 50^{\circ} \text { (max. light). }\end{array}\right.}\end{array} \begin{array}{l}6441 \frac{1}{2} \\ 64^{\circ} 41^{\prime}, 64^{\circ} 40^{\prime} \text { (faint), } 64^{\circ} 42^{\prime} .\end{array}\right.$

[^1]\[

\left[$$
\begin{array}{rl}
a s=3415 & 34^{\circ} 16^{\prime}, 34^{\circ} 18^{\prime} \\
a \gamma=5343 & 53^{\circ} 43^{\prime}, 53^{\circ} 43^{\prime} \\
a n=6355 & 63^{\circ} 55^{\prime}, 63^{\circ} 55^{\prime} \\
a r=900 & 90^{\circ} 0^{\prime}, 90^{\circ} 0^{\prime}
\end{array}
$$\right.
\]

Seligmannite.
Hitherto ${ }^{1}$ only twinned crystals of this rare mineral have been discovered. In August, 1905, however, a large untwinned crystal was found in the Lengenbach quarry. It was met with as a single crystal in the iron-stained dolomite, which seldom carries any of the numerous sulpharsenites. The crystal measures $10 \times 7 \times 5 \mathrm{~mm}$., and its actual shape is represented in fig. 2. Owing to the absence of twinning and of cleavage, it appeared at first sight to be a large and highly modified crystal of tennantite ('binnite'), but when measured the angles were seen to be those of seligmannite.

The planes of the form $\{110\}$ are largely developed. Those of the forms $\{131\},\{121\}$, and $\{111\}$ are finely striated parallel to their mutaal intersections; and those of $\{031\}$ are striated parallel to their intersection with $\{010\}$.

Forty-five forms are present on the crystal, of which twenty-two are new; the latter are distinguished by an asterisk in the following list of forms. Fifty-seven forms have now been observed on this mineral, but only twenty-five of these are met with on bournonite, which Professor Baumbauer has suggested to be isomorphous with seligmannite.

$$
\begin{array}{rccc}
a=\{100\} & { }^{*} F=\{061\} & { }^{*} V=\{12 \cdot 1 \cdot 2\} & s=\{212\} \\
b=\{010\} & \Sigma=\{031\} & { }^{*} S=\{713\} & { }^{*} N=\{323\} \\
c=\{001\} & n=\{011\} & { }^{*} T=\{613 ; & D=\{322\} \\
i=\{130\} & \kappa=\{013\} & { }^{*} P=\{611 ; & \phi=\{113\} \\
f=\{120\} & * G=\{601\} & { }^{*} X=\{14 \cdot 3 \cdot 6\} & u=\{112\} \\
m=\{110\} & { }^{*} H=\{703\} & { }^{*} O=\{313\} & { }^{*} M=\{23\} \\
{ }^{*} l=\{320\} & * I=\{201\} & { }^{*} Y=\{312\} & \rho=\{121\} \\
e=\{210\} & o=\{101\} & C=\{311\} & { }^{*} L=\{131\} \\
\eta=\{310\} & * h=\{203\} & * Q=\{733\} & { }^{*} Z=\{261\} \\
A=\{410\} & x=\{102\} & v=\{211\} & * K=\{161\} \\
{ }^{*} E=\{610\} & \epsilon=\{103\} & * R=\{533 ; &
\end{array}
$$

${ }^{1}$ H. Baumhauer, Sitz-ber. Akad. Wiss. Berlin, 1901, p. 110 ; 1902, p. 611. R. H. Solly, Min. Mag., 1903, vol. xiii, p. 336 ; 1905, vol. xiv, p. 82.

The following angles were measured on this crystal:-

	Calcu- lated.	Measured.		Calculated.	Measured.
$\begin{gathered} \text { Zone }\left[\begin{array}{l} 100,010] \\ 100: 610 \end{array} .\right. \end{gathered}$	$8^{\circ} 45^{\prime}$	9^{5},	$\begin{array}{r} \text { Zone }\left[\begin{array}{l} 100,012] . \\ 100: 12.1 .2 \end{array}\right. \end{array}$	$10^{\circ} 53^{\prime}$	11^{7}
: 410	130	135	: 14.8 .6	$2618 \frac{1}{2}$	
: 310	17 6年	1710	: 312	3734	
: 210	2447	2448	: 212	495	492
: 320	3137	3137	: 112	6634	6635
: 110	4243	424312	012	$90 \quad 0$	-
: 120	6134	6140	Zone [100,011].		
: 130	709	$70 \quad 918$	100:611	13 102	13
:010	$90 \quad 0$	90 0	: 311	$25 \quad 4 \frac{1}{2}$	25
Zone [100,001].			: 783	31	
100:601	9 591	10	: 211	35 31	353
: 703	$2422 \frac{1}{2}$	2430	: 533	406	
: 201	$2751 \frac{1}{2}$	2751	: 322	436	436
: 101	$4635 \frac{1}{2}$	4635	: 111	5432	5433
: 203	5746	5750	: 011	$90 \quad 0$	$90 \quad 0$
: 102	64 4112	6445	Zone [010,101].		
: 103	7230	7231	010:161	1443	14
: 001	900	$90 \quad 0$: 131	2743	281
Zone [010,001].			: 121	$3814 \frac{1}{2}$	3814
010:061	1048	11	: 111	57 361	5737
: 031	20 531	2052	: 323	67 4 ${ }^{\frac{1}{2}}$	678
: 011	4852	4852	: 212	7224	7221
: 013	7346	7346	: 313	78 31	784
:001	$90 \quad 0$	$90 \quad 0$: 101	900	900
$\begin{gathered} \text { Zone }[100,013] \\ 100: 713 \end{gathered}$	25161	25	(233) lies in zones [121,112], [011,111]; (261) in zones [130,131], [010,211]; and (161) in zones [130,031], [010,131].		
100:613	2851	29			
: 413	3934	3930			
: 313	4746	4745			
: 113	7310	7310			
: 013	90 0	$90 \quad 0$			

Fig. 2.-Seligmannite.

Fig. 3.-Marrite.

Marite.

During the summer of 1905 I came across only two crystals of this very rare mineral, of which there is still insufficient material for a chemical analysis. The two new crystals differ in habit from those previously described (this vol. p. 76).

Crystal No. 1 (fig. 3) was deposited in a cavity of the white dolomite, and in appearance closely resembles a tabular crystal of dufrenoysite. The faces in the zone [100,010] are deeply striated parallel to their mutual intersections; the face (031) is largely developed and is marked with obliquely placed striations.

Crystal No. 2, with a sharply pointed oblique habit, was deposited in the centre of a large hollow crystal of rathite. On this crystal the forms $\{170\},\{150\},\{140\},\{081\}$, and $\{083\}$ are largely developed.

The following list of thirty-four forms observed on the two crystals includes seven which are new.

$$
\begin{array}{rrrrr}
a=\{100\} & 7 r=\{170\} & * 4 k=\{041\} & -p=\{111\} & +p=\{111\} \\
b=\{010\} & 5 r=\{150\} & \frac{7}{2} k=\{072\} & -2 t=\{212\} \quad+2 q=\{12 \mathrm{I}\} \\
c=\{001\} & 4 r=\{140\} & 3 k=\{031\} & -2 u=\{211\} & \\
& 3 r=\{130\} & * \frac{8}{3} k=\{083\} & -2 q=\{121\} & \\
-2 h=\{201\} & 2 r=\{120\} & \frac{7}{3} k=\{073\} & *-3 q=\{131\} & \\
+2 h=\{201\} & r=\{110\} & 2 k=\{021\} & *-5 q=\{151\} \\
+h & =\{10 I\} & \frac{3}{2} s=\{320\} & k=\{011\} & *-w=\{271\} \\
& 2 s=\{210\} & \frac{2}{3} k=\{023\} & *-v=\{312\} & \\
& * 3 s=\{310\} & \frac{1}{2} k=\{012\} &
\end{array}
$$

The plane 312 is well developed and lies in the zones [201,111] and [212,100].

In the following list of measured angles it will be noticed that the angles measured in the zone $[010,201]$ differ somewhat from the calculated values. The same difference was observed in a crystal previously measured, and it would seem that the elements have not been quite correctly chosen.

$\begin{aligned} & \text { Zone }[100,001] . \\ &(100):(201) \\ &:(000) \\ &(100):(20 \overline{1}) \end{aligned}$	Calcu-	Measured.		Zone [010,100]. (010): (170)	Calcu- lated.	Measured.	
			II.			I.	1 I.
	$30^{\circ} 58^{\prime}$	$30^{\circ} 57^{\prime}$	-		$13^{\circ} 55{ }^{\frac{1}{\prime}}$		$13^{\circ} 59^{\prime}$
	8845	8846	-	: (150)	1988	$19^{\circ} 8^{\prime}$	1913
	3138	3137	-	: (140)	2327	2330	2327
Zone [010,001].				: (130)	$\begin{array}{ll}30 & 3\end{array}$	$30 \quad 3$	305
(010) : 041)	3253	2245		: (120)	4057	410	4053
: (072)	21 51	313	$31^{\circ} 3^{\prime}$: (110)	$60 \quad 3$	605	$60 \quad 2$
: (031)	${ }^{35} 88$	356	35 8	: (320)	6859	691	-
: (083)	3822	-	3821	: (210)	$7355 \frac{1}{2} 7$	7350	-
: (073)	428	-	4230	: (310)	798	792	-
: (021)	${ }^{46} 32 \frac{1}{2}$	4622	4628	$:(100)$	$90 \quad 0$		-
: (011)	${ }_{64}^{64} 39$	-	6430	Zone [010,101].			
: (023)	72 282	73	-	(010) : (151)	2855	2853	-
: (012)	$7640 \frac{1}{2}$	7648	-	: (131)	$4238 \frac{1}{2}$	4238	-
: (001)	${ }^{90}$	9	-	: (121)	54	546	-
Zone [010,201].				: (111)	$70 \quad 6$	707	
(010) : (271)	$31 \quad 10 \frac{1}{2}$	3013	-	: (212)	79 4427	7946	
: (211)	7643^{2}	7617	-	Zone [010,101].	-		
: (201)	$90 \quad 0$	$90 \quad 0$	-	(010) : (121)	5330		5325
				: (111)	6942		6945
				: (101)	$90 \quad 0$	-	90

Proustite.

This mineral has not hitherto been recorded from the Binnenthal. A single, minute crystal was found attached to a crystal of rathite ${ }^{1}$, which was taken in 1905 from the white crystalline dolomite of the Lengenbach quarry. The crystal is a hexagonal prism $a\{10 \overline{1}\}$ terminated by the rhombohedron $r\{100\}$. The prism-angle was measured as $60^{\circ} 0^{\prime}$, and the angles between the prism and rhombohedral faces as $53^{\circ} 57^{\prime}$ and $53^{\circ} 58^{\prime}$ (from the element given by Miers, $a r=53^{\circ} 54^{\prime}$). The crystals of the two minerals are so arranged with respect to each other that the prism-edges are parallel.

Trechmannite.

During the season 1905 very few crystals of the new red minerals described in the last number of this Magazine have been found in the Lengenbach quarry. One crystal, which was at first thought to be hutchinsonite, proved on measurement to be the very rare mineral trechmannite. It was found attached to a crystal of tennantite (' binnite'). The crystal is very irregularly developed; it shows the forms $a\{101\}$, $m\{2 \overline{1} \overline{1}\}, r\{100\}$, and $x=a\{21 \overline{2}\}$. The faces of $x=a\{21 \overline{2}\}$ ar-

[^2]large and belong to a trigonal trapezohedron. This trapezohedral-hemihedral type of symmetry of trechmannite (like that of quartz and cinnabar) had already been noticed by Mr. G. F. Herbert Smith on the crystais previously described by me (this vol. p. 75).

Hyalophane and Barytes.

Some of the hyalophane crystals found during 1905 in the Lengenbach quarry are of a pale green colour, and had been mistaken for green tourmaline. Pale green crystals of barytes have also been found. At this locality the crystals of barytes are usually colourless, though sometimes bluish-grey in colour.

[^3]
[^0]: 1 The crystal described above, and the specimen from which it was taken, have been acquired by the British Museum. The crystal was measured on the three-circle goniometer by Mr. G. F. Herbert Smith, and the following additional new forms were observed : $-q=\{331\}=\{6241\}, k=\{452\}=\{3121\}, \Gamma=\{31 \overline{1}\}=\{4041\}$, and $d=\{411\}=\{10 \overline{1} 2\}$. The faces were in all cases small, but gave distinct reflections of the collimator-slit. The measurements were made from the large basal plane $\varepsilon=\{111\}=\{0001\}$, and the azimuths were determined from the nearest zone containing a pole of the form $\alpha=\{10 \bar{T}\}=\{1120\}$. The calculated values were computed from Koksharov's fundamental angle adopted in Dana's 'System of Mineralogy,' 6th edit., 1892.
 ${ }^{2}$ Zeits. Kryst. Min., 1877, vol. i, p. 576.

[^1]: ${ }^{1}$ Calculated from the element of N. I. Koksharov, ' Materialien zur Mineralogic Russlands,' 1870, vol. vi, p. 357.

[^2]: ${ }^{1}$ The rathite crystal is similar to that represented in fig. 5, Min. Mag., 1901, vol. xiii, Plate III.

[^3]: Montreux Club,
 Territet, Switzerland.

