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On some twins of calcite ; and on a simple method of 
drawing crystals of calcite and other rhombohedral 
crystals, and of deducing the relations of  their symbols. 

BY W. J. LgwIs, M.A. 

Professor of ~[ineralogy in the University of Cambridge. 

[Read January 21, 1908.J 

1. Having had occasion recently to draw the twins of calcite, I noticed 
the advantage of the twin-axes being all placed in the plane of the 
paper. The representation of the rhombohedron which results from this 
condition is so unsatisfactory that, obvious as the idea must have been 
to all crystal draughtsmen, few, if any, seem to have tested the utility of 
the projection. I desire to point out a few of its advantages. 

2. The 9"hombohedron. 

Fig. 1 shows a rhombohedron in two positions--the upper one being 
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through t' and t at the points 

a plan on the central horizontal (equa- 
torial) plane, and the lower one an 
elevation with the principal axis VW, 
the polar edge V/~, and the polar 
diagonal W/~ all in the paper. All 
rhombohedra are projected in the same 
way: all that need be given is the 
angle VW/~, which is the complement 
of the angle made by a face with the 
base. Thus, for the fundamental rhom- 
bohedron of calcite, shown in fig. 1 and 
by interrupted lines in figs. 2 and 8, 
the angle VV'g is 45 ~ 28.4'. 

The figure is easily drawn. A ver- 
tical llne being drawn for the principal 
axis, three equal lengths, V't', t't, and 
t F, are marked off on it. Through 17' 
a second line is drawn at the known 
angle FlPg, meeting horizontal lines 
/~', g. Then clearly W/x'=g'g; and 
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~ t : 2 ~ ' t ~ 2 t z , ~ .  The figure is then completed by drawing the large 
parallelogram WIZV , and bisecting it by the median edge tZ'lZ,. The 
points A, /~, A" in the plan are projected in the same point in the 
elevation--midway between I z and I z'. They are important points in the 
geometry of rhombohedral crystals, and the distinction must be borne 
in mind. 

From the method of drawing, it is clear that the median edge of the 
two faces shown is in the case of every rhombohedron parallel to the 
paper, and is projected in a line through the centre, which may be taken 
as origin. After drawing the fundamental rhombohedron it is advan- 
tageous to draw through the median coigns t z faint vertical lines, for the 
similar coigns of every derived rhombohedron will lie on them, if it is 
drawn to the same horizontal scale. 

The figure being taken to represent the fundamental rhombohedron 
{100} of Miller----R of Naumann, the ~illerian axis O X  coincides with 
with 0]z', and the parameter on it may be taken equal to Vtz ; whilst the 
axes 0 Y and OZ and the parameters on them are all projected in a line 
parallel, and equal, to V~,. The face (100) is projected in the diagonal 
F'/z; the upper parallelogram is (001), and the lower (010). 

Corollary 1. Now, tan VPOX = tan V'Vbt ---- /zt 2/~,t 
~ = V t "  

Also, tan D --  tan V~,t -~ Vt - -  o 

.'. tan V'OX tan D ----- 2 ft,t x --Vt _-- 2. (1) 
Vt t~,t 

This is the well-known equation which gives the angle made with the 
principal axis by the polar edge which 
is taken as axis of reference, when D, 
the inclination of the face to the base, 
is known. 

Corollary 2. { l l 0 } = - � 8 9  fig. 2. 
Each face of the rhombohedron {110} 
truncates a polar edge of {100} = R .  
One of its faces may be taken to pass 
through the polar edge V't 2 of R, and 
may be projected in any convenient 
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Fig. 2. 

length on this edge. I f  the length is taken equal to V~/2, then t '  is 
the rower point of trisection of the length between the apices, and 0 
must be the lower apex of {110}. Since, to the same horizontal scale, 
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the length between the apices is one-half of VV', and the face per- 
pendicular to the paper and projected in 0/~', meets the principM axis at 

Fig. 8. 

the lower apex, the rhornbohedron is Nau- 
mann's --~-R. The completion of the drawing 
needs no further explanation. 

Corollary 3. { I l l } - - - - - 2 R ;  fig. 8. This 
rhombohedron has each of its polar edges 
truncated by a face of {100}. Hence the 
polar diagonals V'g, V'g, may be taken for 
two of the polar edges of { I l l }  ; and the 
point t is then the uF/~er point of trisection 
of the length between the apices. The lower 
apex is at V,, where VV~= VV'. The com- 
pletion of the figure affords no difficulty. 
The Naumannian symbol is clearly - -2R;  
for, to the same horizontal scale, all lengths 

on the principal axis are doubled, and the faces are turned the opposite 
way to those of {100}. I ts  Millerian symbol is found from the fact that 
two of its faces are in a zone with (100) ; hence it is {1il} or { I l l } .  

Corollary'4. Similar constructions will give us further rhombohedra, 
p,~ the faces and edges of which 

~ M  either truncate, or are trun- 
cated by, those already 
drawn; tile sign being 
Changed with each trunca- 

k .s'. tion, and the length inter- 

~ " l & h / H h O ~ . 1 .  X~.,.,// eepted on the principal axis 
being successively halved or 
doubled. Thus we can draw 

-~>'" ~R,--~-R,&c. and4R,--8R,&e. 
Corollary 5. mR={hll}. 

~ \ \ ' . ~ 1  .[-~- J " " " '- " " " I f  it is desired to draw this 

\77 
rhombohedron to the same 
scale as {100}, lengths ~w 
are marked off from 0 on 

K ~" both sides of the principal 
Fig. ~. axis to give the apices pn, 

lr m. The length lrmlr m is trisected at r and r', and horizontal lines are 
drawn through them to meet at h, h', &c. the vertical lines through 
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/% /~', &e. The figure is then drawn as in the eases already given. 
Such a figure is shown by interrupted and continuous lines kk',  &c. in 
fig. 4. 

I f  m is negative, as for instance --~R,  the points A, h p, &e. on the 
horizontal lines through r and r '  must be taken on the opposite sides of 
the principal axis to those in the figure. We thus have for each value 
of ~n two rhombohedra with equal angles, but in which the edges and 
faces are turned opposite ways. They are  sometimes distinguished as 
Tositive and negative ; and sometimes as direct and inverse; the first 
designations in each case indicating those rhombohedra in which the 
faces and edges are directed in the same way as those of R----{100}. 

I f  qb is the angle made by the faces of m R  with the base, then, from 
fig. 4, 

2 mc 2 me 
tanqb----_ V ~ r + r  ~ + T A ~  ---~- + ~ t .  

2c 
But, from fig 1, tan D ---- Vq +/zt  = --~ + Izt. 

.'. tan qb - -  m tan D. (2) 

I t  is clear that, if m and D are known, the angle qb can be computed. 
The rhombohedron can then be drawn to any arbitrary scale by the 
same process as was followed in drawing the elevation in fig. 1. 

h - - l  
We also have (see section 13, corollary 1), m ---- h + 2-------~" (3) 

8. The scalenohedron, turn--= {hkl} ; fig. 4. 

When the Millerian indices are given, m and n have to be found by 
the relations proved in section 13 : - -  

O - - S k  h - - 1  
m -  ~ , n _ 0 _ a k ,  (4) 

where 8----h+k+~, and k is that index which occupies the same place 
in the face-symbol as zero does in the symbol of that face of the 
prism {10I} which truncates the median edge of the face. Now the 
prism-face which truncates the rhombohedral edge through 0 is parallel 
to the paper, and therefore to the axis of X. Hence zero and therefore 
k occupy the first place in the symbols of the prism*face and the two 
scalenohedral faces which intersect in this median edge. The sign 
of m has to be carefully attended to ;  for ttle diagonal YmA lies to 

Y 
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the right or left of the principal axis according as m is positive or 
negative. The sign of n is indifferent, for the length nmc has to be 
marked off on both sides of the origin, and the apices joined indifferently 
to each median eoign k. 

The auxiliary rhombohedron mR has to be first drawn in the way 
described in section 2, corollary 5. The scalenohedral apices P ,  V,, 
where OV'*----nmc, are then both joined to each median coign )~ of mR. 

The scalenohedron is said to be direct or inverse according as m is 
positive or negative. I t  is clear that the scalenohedron --tuRn must 
have the same angles as tuRn; for it only differs in the points X occu- 
pying positions on the opposite sides of the principal axis, but each 
at the same distance respectively on the lines through r and r '  as in the 
case represented in the figure. 

4. The trapezohedron, a{hlk} ; fig. 5. 

I t  is clear that figures in which the horizontal planes are projected 
iu lines will not be satlstactory, when the base and a number of 

�9 ~ i  i~:f, 

Fig. 5. 

horizontal lines in, or parallel to, it have 
to be shown. Hence this method and 
:Naumann's with six equal vertical spaces 
- -bo th  being orthogonal projections with 
the axis in the paper--are not suitable 
for hematite, quartz, and similar crystals. 
But the methods give a fair representa- 
tion of one of the trapezohedra into which 
the scalenohedron is divided by the omission 
of faces connected by symmetry-planes, 
and a fair one of the quartz-twins with 
inclined axes. The present method has, 
moreover, the advantage of needing no 

computation of the lengths of the median edges. 
Fig. 5 represents on a diminished scale a trapezohedron derived 

from fig. 4 by the omission of the two central faces and the alternate 
faces below the paper. The side median edges have both to be ex- 
tended, and the central edge kr~., has to be replaced by a new one 
through 0 in which (lkh) meets (lhk): this edge is clearly parallel 
to the scalenohedral edge Vnh of fig. 4. The intersections of this new 
edge with the extended median edges give two new median coigns 
(T' being one), to which polar edges are drawn. Further, the other 
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median coigns lie on the horizontal lines through this pair, so that 
two of them are fixed at once. The remaining two lie on the dotted 
retained median edge, in which the two faces below the paper inter- 
sect. The figure is now easily completed. 

The relation of the extension of the retained median edges of the 
scalenohedron is also easily derived from the two figures. The edge 
~.'k, in fig. 4 stands 10arallel to the paper at distance a ; and the parallel 
dotted line 0 7 in fig. 5 is at the same distance below. I t  is clear 
therefore that  the extension X' T in fig. 5 is double the length X'f  in 
fig. 4. The points y on this median edge can therefore he easily found ; 
and the horizontal lines through them give those on the two other 
retained median edges. 

5. The pyramid, nP2---- {hkl} ; fig. 6. 

Where h+l .=2k,  or O - - 3 k : O  ; and the same rule as to which index 
is k holds as in the case of the scalenobedron. I t  is clear that  the 
relation of the indices makes m of equa= fv - 
tions (4) equal to zero, and there is no i IF.s 
auxiliary rhombohedron : the median edges - ~ t  
are horizontal. J 

Here the connexion between the median ( ~ q l ~ / - : \ ~ c  
\ x  

B r coigns in the equatorial plane and the \ 
a10ices for some easily determined pyramid B' ~ . ~ i ! : / ~ / ~  , ~qx "'~ 
has first to be found. Such a pyramid is 
tha t  whose alternate polar edges are ~ l t V J "  

,V 
truncated by faces of the fundamental a 
rhombohedron {100}. For the diagonals of "l~ 
this rhombohedron give four polar edges Fig. 6. 
of the pyramid, and by joining the points B (only two of which are 
marked), in which these diagonals meet the central horizontal line, to 
the opposite apices the figure is completed. 

To find the Millerian symbol of the pyramid, fig. 6. Let (hkl) and 
(hlk) be the two faces whose polar edge VrB" is truncated by (100), 
projected in Vt/x of fig. 1. Since the three faces are tautozonal, we 
have by the zone-law (Lewis's ' Crystallography,' lo. 40) : -  

P - k : = 0 ,  .'. l : - - k ;  

for 1 cannot be the same as k, since two equal indices indicate a 
rhombohedron, base (111), or prism {2i i} .  Again, since h + l  ~ 2k; 

h-=2~-- l=3k .  
F 2  
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The simplest numbers which satisfy these two equations are 8, 1, :[ ; 
which are therefore the indices of one face. The second face is (311) ; 
and the pyramid is {81I}. 

Any other pyramid riP2 is found by joining the apices V", Fn, to 
the same points B. The length OV" has to be found so as to accord 
with the scale of the pyramid V/~'B,. 

According to the method of projection adopted, the pyramid-edges 
are drawn through different points in the equatorial plane, and the 
length intercepted on the principal axis varies accordingly. Thus ill 
Lewis's ' CiTstallography', p. 400, the edges pass through points M in 
which the polar edges of the fundamental rhombohedron meet the 
equatorial plane. But as shown in p. 372 of the 'Crystallography' 
the points B are on the lines OM and such that OJB----OM/2. The 
pyramid in fig. 6 is therefore drawn to one-half the scale of that in 
the 'Crystallography', where its symbol is given as 2P2. Owing to 
the change of scale it should now be given as P2, and the value 
of n there given, p. 402, must be halved, and to our present scale 

l h - - 1  
n = : h + 1 (5)  

Hence-for {81It, n =  1 ; and for the pyramid {917} shown in the twin, 
fig. 15, n--=4. 

Naumann draws the pyramid-faces through the points A (see plan, 
fig. 1) at unit distance on the dyad axis to which the edge is perpen- 
dicular. The angle between OA and OB in fig. 1 being 80 ~ the lille 
OB is in that case met at distance OAsecSO~176 
His n is therefore ~- of that given by equation (5). The two other 
dyad axes 05 and OA r are met at double the distance intercepted on 
the first, OA; and hence the symbol nP2. Naumann's value of n is 
found in section 13, corollary 2. 

6. To draw combinations of a hexagonal Trism and 
a rhombohedron ; figs. 7 and 8. 

If the prism is { 10i } (fig. 7), its faces truncate each a median edge 
of every rhombohedron, and the drawing is made in the same way for all 
of them. The rhombohedron, say {110}, is first drawn as in section 2, 
corollary 2 ; and the figure is then completed by drawing equal vertical 
lines through the median coigns : the lower ends of these lines giving 
points through which the lower faces pass. 
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When the hexagonal prism is {2ii} (fig. 8), two of the faces are 
projected in the vertical edges marked 2 i i  and 211. The drawing is 
similar whatever the rhombohedron ; and this is first drawn. Let it be 
{110}. The faces (101) and (121) meet in a line parallel to the horizontal 
diagonal of (101), i.e. a line like A A' of the plan in fig. 1. The face 
(I i2)  meets (011)in the original line in which this face is projected; but 
it meets (101) in a new line which passes through a point in which 
a horizontal line through g meets the projection of (011) ; g being the 
point in which (2 i i )  meets the polar edge. In  this and all combinations 
involving a rhombohedron, the coiyns at each end are of two kinds, similar 

f~ 

Fig. 7. Fig. 8. 

ones lyi~g in a horizontal ph~e. Hence, if the position of one coign of 
a kind is tbund, the other like ones are found by drawing a horizontal 
line through the known eoign to intersect lines on which the eoigns lie. 
Tile completion of the figure is now obvious. 

7. 2'o draw combinations of a scalenohedron, the prism {2II}, and 
a rhombohedron ; figs. 9 and 10. 

The method being the same whatever the scalenohedron, we select for 
illustration {20I} = R S ;  for it gives a common crystal of calcite. This 
is first drawn as already explained, {100} being the auxiliary rhombo- 
hedron. We then introduce the prism-faces, which meet at O, A, A,, the 
middle points of the median edges. Through A and A, vertical lines are 
drawn, in which (2i i )  and (911) are foreshortened. These lines meet the 
polar edges at points which fix the two sets of horizontal lines on which 
like coigns lie. Each such eoign is joined to the nearest pair of middle 
points, and fig. 9 is completed. 

When the prism-edges are long, as in fig. 10, vertical lines of the 
required length are drawn through O, A, A, ; and the lower part is then 
obtained by drawing lines, parallel to those forming the lower part of 
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fig. 9, through an apex displaced to the same extent and through new 
points on a horizontal lille as if  they were O, A, and A,. 

In fig. 10 the rhombohedron e {011} is also represented; and the 
method of introducing the faces is the same for every rhombohedron. 
The scalenohedron and prism having been first drawn in the manner just 
described, through each of two points equally distant from the scaleno- 

e t 

Fig. 9. Fig. 10. 

hedral apices two lines are drawn parallel respectively to the polar 
diagonal and edge of the rhombohedron which lie in the paper. These 
lines bound the complete figure ; and also determine, by their intersection 
with the polar scalenohedral edges, the points through which horizontal 
lines have to be drawn so as to get the remaining coign of each of the 
two faces seen. The figure gives a fair representation of crystals common 
in Cumberland. 

Calci~e Twins. 

8. The drawing of these twins is now easy, and the pictures are fairly 
satisfactory. Fig. 11 shows the common ' dog-tooth' twin of Derbyshire, 
having (111) for twin-face; i.e. face of association the base, and axis of 
rotation the principal axis. The way of drawing tile figure is obvious 
from comparison of figs. 4 and 9. 

The method does not give a satisfactory picture of a twin in which the 
forms are the prism {2 i i  t with a rhombohedron; nor is it satisfactory 
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for the similar twins of dolomite, in which the form is {100}, and the 
one individual is associated with the other partly along the base and 
partly along prism-faces. 

9. In drawing twins with inclined principal 
axes the diagram of the simple crystal is divided 
by a line parallel to the diagonal in which the 
twin-face is projected, and perpendiculars to this 
line are drawn across it through each eoign which 
is shown. Points on these perpendiculars at the 
same distance from the section-line as the coigns 
are then marked. These points are joined to one 
another and to the points in which the section- 
line is cut by edges of the simple crystal, so that  
the rotated or reflected portion is the symmetrical 
duplication of t h e  first. The method has the 
advantage that, after the twin has been drawn, 
the figure can be turned round so as to place 

Fig. ll.--Calcite 
the twin-face vertical and the twin-axis hori- twinned one(Ill).  
zontal. 

10. Twi~-law r (100). Fig. 12 shows a twin according to this law. 
The forms are {2i i}  and {101}. The twins are fairly common in 
Cumberland, and are often very flat from the small width of the face 
m (2i~) a~d the large extension of (1~1). 

Fig. 12. 
Calcite twinned on r(100). 

Fig .  13. 

Fig. 18 shows a twin according to this law produced from fig. 10. 
Fig. 14 shows the common ' butterfly-twin'  : it has been obtained from 
fig. 13 by largely developing the faces (0i2) and (02I) which meet 
in a lille parallel to the polar edge tr/~ of fig. 1. After they had been 



72 W. J. LEWIS ON 

drawn the figures have been turned round, so as to put  tile twin-face 
upright. 

11. T w i n - l a w  e (011). This twin-law is that  commonly observed in 
thin twin-lamellae. I t  is somewhat rare in dist inct  well-grown twins, 
but  the Cambridge Museum has two rather remarkable specimens. The 
one represented in fig. 15 occurs in tabular twins of fair, and nearly equal 

\ 

Fig. 14. 
Calcite twinned on r(100). 

Fig. 15. 
Calcite twinned on e(011). 

thickness--dimensions varying from 1�88 to 2 inches across by �89 to 1 inch 
thick. Their surfaces have a thin crust of pitted and frosted calcite, 
which gives no reflected image:  they are associated with some decom- 
posing marcasite, and one has the cast apparently of a cubic face of 

fluor crystal. A t  first sight the forms seem to be those shown in 
fig. 7 ;  but  close inspection of the apparent prism shows that  the edges 
are not parallel, although nearly so. As one of the twins was slightly 
broken, i t  was possible to get from a fragment the approximate angles 
of one of the faces to the three cleavages by gumming a piece of cover- 
glass to the rough face. The observed angles, and those computed for 
{917} by formulae (25) in this Magazine, vol. xii, p. 839, are given in 
the following table : - -  

Computed.  Measured.  

A = 100 ^ 917 ... 41 ~ 42 '  ... - -  
I 0 0 ^  . . . . .  138 18 ... I38  ~ 7 '  

g = 010 ^ . . . . .  81 13 ... 81 21 
0 i 0  ^ . . . . .  98 47 ... 98 83 

= 001 ^ . . . . .  116 12 ... 116 20 
00I  h . . . . .  63 48 ... 63 41 

l~'or ttm determination el" the face-symbol from mcasuremcnts of the 
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angles )`, /~, v, equations (25) can be easily transformed to give the 
following : - -  

�9 h + / z  ) ` - - k t  
h --  k cos )` - -  cos ~ sm ---2--  sin 

- -  ( 6 )  k - -  I cos/z - -  cos v / z + v  
sin sin/z --  v - - y -  

2 

Introducing the observed values of the angles, we find by tables of 
natural, or logarithmic, sines and cosines : - -  

h - - k  
k - ~  ---- 1, very nearly ; 

.'. h - -2]c+l=O--3k=O; 

and the form is a bipyramid. The indices are then easily found from 
ally pair" of ecluations (5). 

The angles )`, /z, v, made by any face with the axial planes of a rhom- 
bohedral crystal are connected with the angle D - - 1 0 0  ^ 111 and the 
angle, CP, between that  face and the basal plane, by the ibllowing 
expression (which may be readi ly deduced in a manner similar to that  

- ' 355) : -  in Lewis's ' Crysta l l%raphy , p. 

cos ) , + c o s / ~ + c o s  v = 3  cos D cos CI'. (7) 

From equations (25) we can now obtain the following equations, 
which render easy the determination of h, k, l : 

h k 
cos )` cos D --cos CP cos a cos/z cos D --cos CP cos a 

l 0 
cos v cos 1 ) -  cos C1:' cos a (1 --cos a) cos CP'  (8) 

a being the angle over the polar edge of {100}. 
The second twin, of which there are three or four individuals, occurs 

on a specimen from the lead mines of Seven Churches, Co. Wicklow. 
They are very thin ; and the largest are about 1�88 inches across by only 
~th of an inch in the thickest part.  Most of them are now detached, 
as they were very loosely attached by the edge to the matrix. The 
form is the scalenohedron (13. 0. 11}=R12 ,  a form which I rby  1 gives 
as doubtful. Owing to the edges being part ial ly broken along the 
cleavages, i t  was possible to measure the several zones; and the angle 
(100) : (13.0 .  11) has a mean value of 46 ~ 21' (the extremes in different 
zones being 46 ~ 18'  and 46 ~ 23~). The computed angle is 46 ~ 23'. Several 
of the faces, and especially, the widely extended ones, gave more than 

J. tL MeD. Irby~ 'On the erystallographyof calcite.' Inaug.-Diss., Bonn, 
1878. 
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one image. These twins are associated with very long, slender clTstals, 
which proved on measurement to be the simple scalenohedron { 13.0.11 }. 

As is common in twins according to this law which are knowu 
to me, there is in parts an overlapping of one indi- 
vidual over the other in both the twins described. 

12. Twin-law f { i l l } .  Twins according to this 
law are rather uncommon. They sometimes occur in 

or2 ~ot~)/ Cumberland in crystals in which the prism {2i I}  is 
" /(l largely developed; and they have been found in 

Somersetshire 1 in rough crystals which are a com- 
bination of {20I} with {2iI} .  A twin of this latter 
kind is shown in fig. 16. To draw it we have only 
to divide a crystal, like that  shown in figs. 9 or 10, 
by a line parallel to V~  of fig. 8, and to erect per- 
pendiculars through the coigns to this line. 

18. The principle of the drawings lends itself to 
Fig. 16.--Calcite 

twinned oaf ( I l l ) ,  the determination of certain numerical relations; but 
not to the computation of angles or the converse. 

We shall illustrate the way in which the drawings may be useful, 
V,~ by deducing the relations 

between ~aumann 's  and 
]~iller's symbols for the 
scalenohedron and other 
forms. 

To determine in the sca- 
lenohedron, t u r n =  { hkl } , 
the relations between m and 
n and the indices, h, k, 1 of  
one of its faces. 

I t  is easy to see that  the 
Millerian symbols inscribed 
on the sealenohedral faces 
are consistent. For two 
faces meet in the polar edge 
V'*X and intersect O X  at S 
(fig. 4), where O S =  V,/h.  
I f  the face above the paper 
is denoted by (hlk), that  

which is symmetrical to it and behind the paper is (hkl), and the parallel 
face (that to the left and bottom) is (hld). 

i It. L. Bowman~ Min. Mag., 1903~ vol. xiii~ p. 329. 

/ 

V~v 

Fig. 4 (repeated). 
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Draw u~ parallel to V/z and O X  to meet the principal axis at u, 
m - 1  

then uh = VIz; and Vu = / z h  = tr = -~ c. 

m + 2  
Also, Ou = 0 V +  Vu = ~ c. 

From the similar triangles OSV",  uhV" ,  we have 

h = g ~  u h  uV "  _ 0 V" + Ou 

OS - -  OS - -  0 V" 0 V" 

m + 2  c mac + 
8 ra + 2 + 8ran 

q n n c  3 r a n  
(9) 

Again, the two faces which meet in V, ~ have -- 1 for first index ; i.e. 

OS'  = V~ Hence from the similar triangles OSPV,, u) tVn,  we have 
1 

- l -  Vu u~ =uV" O g , - O u  

O,S' OS' O r .  O r .  

m ~ c - -  - -  
m + 2  

C 
3 3 r a n - - m - - 2  

• n c  8 m ~  

�9 l m + 2 - - S m n  (10) 
�9 " ~ " 8 m ~  " 

Again, the two faces (klh) and (khl) will, if produced, meet in a line 
in the paper parallel to Ok';  and it will therefore meet O X  on the 
negative side in a point E (not shown). Now OU is parallel to Vmk ; 

consequently the triangle OV=.E is similar to u k V  m. 

.'. - - k  = V/Z u h  uV,,, O V ~ - O u  

OE - -  O E  - 0 V" - -  0 V ~ 
m + 2  

~t'tC-- - -  C 
_ 8 _ 2 ( m - -  1 ) .  

~rt~$c 8 m ~  

.'. k .= 2(1--m) 
Bran (11) 

From equations (9), ( 1 ) ,  and (11) we have 

h k 1 1 
~ ~ �9 

m +  2 + 8 m ~  --  2 ( l - -m )  --  m + 2 - - 3 m n  3ran 
(1-2) 



76 

Hence we have 

h + l - - 2 k  

W .  J .  L E W I S  ON 

_ 2 ( . ~ + ~ ) - 4 ( 1 - ~ )  
- , ~ .  (4*) 

h + k + l  6 

h - -  l 6ran 
and h + l - - 2 k  "= 2(m+ 2)--4(1--m) n. (4**) 

h - ~  ( la)  Also m n  - -  - -  
h + k + l  

As has already been said, the sign of m has to be carefully attended 
to ; that of n is immaterial. 

Corollary 1. When n = l ,  the scalenohcdron coincides with the 
auxiliary rhombohedron ra i l  From equation (4"*), it follows that k=Z. 
Hence from equation (4"), 

h - - l  
'~ = h + 2-----f (3 ')  

Corollary 2. For the pyramid n~P2, the median edges of the scaleno- 
hedron, which pass through points A on the dyad axes at distance a 
from the origin, become horizontal, and the height mc of the auxiliary 
rhombohedron is zero. Hence m = 0 ;  i.e. h + l - - 2 k = O .  (14) 

But the distance O V"  is finite. In the pyramid it is denoted by 
n~c; and in the scalenohedron mnc:  .'. n~=mn.  

Therefore from equation (13) 
h--1  

n I -= m n  = h + k + l  

Introducing the value of k from (14), 

2 h- -  1 (15) 
~' = 3 h + l  

This is the relation corresponding to Naumann's way of drawing 
the pyramid ; for, as stated in section 5, he draws each horizontal edge 
through a point A on the perpendicular dyad axis to meet each of 
the two adjacent dyad axes at a distance 2a. The scale in drawing 
fig. 6 is ~ of his, and consequently n of section 4 is given by 

1 h- -  1 (5*) 

The relation (5) can easily be deduced from fig. 6 by drawing the 
axis O X  and a parallel line through B, and employing similar triangles 
in a manner corresponding exactly with that by which the scalenohedral 
relations have been obtained. 
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14. As already pointed out in section 4, h'~, (on tile (lotted lille Oy ill 
fig. 5) iS equal to 2~.~f of fig. 4, when both figures are drawn to the same 
scale. We can now find the extension in terms of the indices. Now 
0~.' aim Vm~. being parallel edges of mR, Oh'=�89 Vmk. 

Then by the similar triangles VnOf, V"Vmk , fig. 4, we have, 

Of 0 V" 0 V '~ -- rune n (16) 
V~2t-- V"V,,~--OV"+OV,,, r a n t + m e = n + 1 "  

h ' f  _ O f - O h '  Of Oh' n 1 n--1 
"'" V~,h V ~ - -  V,,~ V , , h - - n + l  2 = 2 ( n + 1 )  

... h'y --_ 2h'f--_ n - 1  1 n - 1  V,,,h = ~ Oh'. (17) 

From equation (4) we also have 
n--1 h- - l - -O+Sk k-- l  
n + l  -- h - - l + O - - 3 k - -  h -k"  

k--1 Oh" 
.'. h 'y = 2(--~k--k) " (18) 

Care must be taken in using (18) to attend to which of the three 
indices is k. 


