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The densest and the least dense packings of equal spheres. 

By SIDNEY MELMORE, B.Sc. 

[Read June 24, 1948.J 

The densest packings.--Of the results which have so far been achieved 
by study of the packing of equal spheres one of the most remarkable, 
both by reason of its simplicity and of its fundamental importance, was 
that  announced by Barlow in 1883.1 He called attention to the fact that  
equal spheres can be most densely packed in two ways, one possessing 
cubic symmetry and the other hexagonal (fig. 1). 

Already in 1862 Tait 2 had investigated the piling of marbles of equal 
size and had noticed that ' there are two obvious ways of constructing 
the layers, and two of applying layer to layer ' :  nevertheless his two 
densest arrangements are in fact identical. He saw that  the cubic struc- 
ture could be begun either upon a square base or a triangular base but 
failed to perceive the possibility of the hexagonal arrangement. 

And even after Barlow announced his discovery, A. G. Greenhill s deal- 
ing in 1889 with the piling of spherical shot concluded that  'Whether  
we begin piling the shot in horizontal layers, in triangular order or in 
square order, the internal molecular arrangement of the spheres is the 
same '. 

I t  was also in 1889 that  Kelvin 4 dealt with the densest packing of equal 
spheres in connexion with his development of Boscovich's theory of the 
constitution of matter. While admitting that  'Mr. Barlow, so far as I 
know, was the first to show a cubic part of the close-packed homogeneous 
assemblage of equal globcs', he declined to recognize the hexagonal struc- 
ture as a homogeneous assemblage. But this came about through his 
adhering to a too-restricted definition of homogeneity. 

In 1898 Barlow ~ took up the subject of the densest packing of unequal 
spheres. ' I  may say', he remarks, ' t ha t  my general principle for getting 
closest-packing of thc spheres is to produce a maximum numbcr of 

1 W. Barlow, Nature, l~ondon, 1883, vol. 29, p. 186. 
P. G. Tait, Proc. goy. Soc. Edinburgh, 1862, vol. 4, p. 535. 

s A. G. Greenhill, N~ture, London, 1889, vol. 40, p. 10. 
4 W. Thomson, Proc. Roy. Soe. Edinburgh, 1890, vol. 16, p. 693. 
s W. Barlow, Proc. Roy. Dublin Soc., 1898, n. ser., vol. 8, p. 527 (preprints dated 

18,07). 
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contacts, so as to diminish, as far as possible, the amount  of interstitial 
space.' In  the case of equal spheres, it is taken as axiomatic that  they 
are most densely packed when each is in contact with twelve others. He 
then goes on to remark that  ' I t  is evident that  twelve contacts for each 
sphere can be attained in a variety of different ways. There are two and 

two only, which give homogeneity of structure. '  
However, by 1907 he had gained further light on the matter, and 

having once more described the arrangements shown in fig. l ,  he adds: 

FIo. 1. FIG. 2. 

' The two assemblages above described are equally close packed and can, 
by combination or admixture, give rise to other equally close-packed 
homogeneous assemblages. ,1 

The question as to how many such closest-packed homogeneous mix- 
tures there might be was left by Barlow incompletely answered; but  it 
has recently been found that  there are four. 2 There are thus all together 
six homogeneous structures possessing 12-point contact and having there- 
fore the same density a of 0 .74048 . . .  

I t  has lately been remarked as a curious fact tha t  although it is 
obviously true that  equal spheres are most densely packed when each 
is in contact with twelve, nobody has yet succeeded in proving it. 
Several persons have shown that  it is true when the sphere-centres are 
at  the corners of a parallelepiped, the earliest so far as I know being 
Kelvin in the paper already cited. But the problem still remains to be 
considered free from such restrictions. 

1 W. Barlow and W. J. Pope, Journ. Chem. Soc. London, 1907, vol. 91, p. 1158. 
S. Melmore, Nature, London, 1947, vol. 159, p. 817. 

a By density is meant the ratio of the total volume of the spheres in a lattice cell 
to the whole volume of the cell. 
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I t  might be thought that  the property of dilatancy 1 is in itself a satis- 

factory proof: for if any distortion of normal piling with 12-point contact 
results in an increase in the overall volume, and therefore a diminution 
of density, it follows that  12-point contact is the condition for maximum 
density. But setting this aside, we may approach the matter in an- 
other way: 

The upper part of fig. 2 represents two equal spheres (radius ~ 1) in 
contact: from 0, the centre of one sphere, project the other on to it. 
The projection will be a small circle with an angular diameter of 60~ the 
area of the small circle is therefore 0-2687r. 

In  place of the question : What  is the greatest number of equal spheres 
that  can be brought into contact with another of the same size ?, we may 
now ask: What  is the greatest number of non-intersecting small circles 
(diameter = 60 ~ that  can be inscribed on a sphere? 

In  the stereographie projection, fig. 2, the four small circles are equal 
and have angular diameters of 60~ two, with their poles at A and B 
respectively, are in contact. A third, C, will be most closely packed 
when it is in contact with the first two ; and again, a fourth, D, will be 
most closely packed in like circumstances. Through A and B draw a 
great circle intersecting the small circles A and B in E and F. Through 
E and F draw secondaries to this great circle. Then the angle of the 
lune VEV'F is equal to the arc EF = 120 ~ So the area of the lune is 
one-third the area of the whole sphere, that  is to say, its area is ~Tr. 

The sum of the areas of the four small circles is 4 x 0-268~r : 1-072m 
The residual area is therefore (1-333--1"072)7r = 0"261r which is less 
than the area of one small circle. So not more than four circles can be 
accommodated within the lune, and therefore not more than twelve on 
the whole surface of the sphere. Hence not more than twelve equal 
spheres can be brought into contact with another of the same size. 

Taking another view of the problem: I t  has been proved 2 that the 
closest packing of equal circles in a plane is that  in which each circle is 
in contact with six, fig. 3. Let the middle circle rotate about a diameter 
so as to generate a sphere. We may then inquire: What  is the greatest 
number of planes through the centre of this sphere upon which a 
like set of neighbouring circles can be inscribed, having regard to 
the symmetry ? 

1 Osborne Reynolds, Phil. Mag., 1885, ser. 5, vol. 20, p. 469. The sub- 
mechanics of the universe, Cambridge, 1903. Rede Lecture, Cambridge, 1902. 

2 B. Segre and K. Mahler, Amer. Math. Monthly, 1944, vol. 51, p. 261. But I 
have not seen this paper. 
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There is an axis of symmetry normal to the plane through the centre 
of the middle circle, which may be regarded as hexagonal or as trigonal. 
I f  hexagonal, then there can be only one plane: if trigonal, there may be 
four, but no more. These planes are parallel to the faces of the octa- 
hedron, and are represented by the great circles in the stereographic projec- 
tion, fig. 4, where three of them are projected on the plane of the fourth. 

The great circles may be thought of as passing through the centres 
of the six circles in their respective planes. I t  follows from considerations 

FIG. 3. 

6 1 

8 

FIo. 4. 

of symmetry that  the centres of these latter circles lie at the intersections 
of the great circles (numbered in the figure) ; and since the great circles 
intersect in pairs, the total number of circles in contact with the central 

4 x 6  
sphere is T ---~ 12. 

I t  is easily seen that  all the arc-segments joining the numbered points 
of intersection are arcs of 60 ~ : therefore when all the twelve circles each 
rotate about a diameter they will generate spheres touching the central 
sphere and also touching their other neighbours. 

The least dense packings.--Although the study of the most open pack- 
ings of equal spheres is of comparatively recent date, some of the results 
have already found application in the elucidation of the structure of 
ionic minerals 1 and of the assemblages built up by ultra-microscopic 
dust particles3 The problem of the most open packing was first pro- 
pounded by H. Heesch and F. Laves in 1933. ~ 

1 H. W. Fairbairn, Bull. Geol. Soc. Amer., 1943, vol. 54, p. 1305. [M.A. 941.] 
H. Heywood, Journ. Imp. Coll. Chem. Eng. Soc., 1946, vol. 2. 

3 It. Heeseh and F. Laves, Zeits. Krist. 1933, vol. 85, p. 443. [M.A. 5-342. l 
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The principal conditions they impose are tha t :  (i) the structure is 
composed of congruent spheres, (ii) it is continuous, (iii) either sphere 
of a pair can be transformed into the other by  symmetry  operations, 
(iv) the lines joining the points of contact of successive spheres pass 
through the centres of the spheres, thus ensuring the stability of the 
structure. (It  follows from this condition tha t  when a sphere is in con- 
tact  with no more than three others, the four sphere-centres must be 
coplanar.) 

FIG. 5. Fro. 6. 

Condition (iii) is of some practical importance. I t  means tha t  the 
whole structure can be developed by applying symmetry  operations 
to a single sphere. If, on the other hand, we operate upon a group of 
spheres, structures can be developed which are even less dense than those 
found by  Heesch and Laves. x However, in what  follows, this condition 
is retained. Of the nine assemblages described by  these authors, it is 
here necessary to consider only two ; both possess cubic symmetry  and 
are non-self-reflexible. 

The nature of the first is indicated by  the ground plan of the left- 
handed form, fig. 5. The spheres are arranged round tetragonal screw- 
axes having a pitch angle of 45 ~ and there are digonal axes of rotation 
between the screws. Each sphere makes contact with three others, and 
the lines of centres from any one sphere to its three neighbours make 
angles of 120 ~ This structure has a density of 0 - 1 8 5 . . .  

From this assemblage Heesch and Laves derive another by  applying 
an ingenious three-for-one substitution, the nature of which will be a t  
once evident from the diagram in the left-hand half of fig. 6. When this 
is done, the tetragonal screws of fig. 5 become 2-point tetragonal screws 
with a connecting sphere between. One such element of the new struc- 
ture is shown in the right-hand half of fig. 6. 

1 S. Melmore, Nature ,  London,  1942, vol. 149, p. 669. [M.A. 8-344, 9-139.] 
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The structure thus derived has a density of 0"056,1 and is the most 
open described by Heesch and Laves. The opinion has been expressed 2 
that  this may perhaps be the most open structure possible (under condi- 
tion (iii)), but  till now no proof has been forthcoming. 

The following considerations are based upon Barlow's conception of 
singular points. ~ These are concisely defined in the Dublin paper (foot- 
note to p. 627) : ' Singular points in a homogeneous structure are points 
which occupy specially symmetrical situations, and so form point- 

FIG. 7. FIG. 8. 

systems containing fewer points than ordinarily; they lie on axes of 
rotation or on planes of symmetry, or on both '  ; but  the paper in the 

Zeitschrift must be consulted for the full exposition. 
I t  is clear then, that  if we are to fill a given space with a homogeneous 

arrangement of as few spheres as possible, the sphere-centres will be 
singular points. Following Barlow's train of thought (Zeitschrift, 
pp. 60-62) it is evident tha t  if there are to be as few singular points as 
possible, then structures with a principal axis of rotation are ruled out, 
and we are left with the consideration of digonal axes only. 

To visualize the position of all the possible digonal axes: Let space 
be partitioned into rhombic dodecahedral cells: then the digonal axes 
will be represented by the normals joining opposite faces. 4 They lie in 

1 The value is thus given by Heesch and Laves. I have carried the calculation 
farther, using 7-figure logarithms, with the result 0'055515... 

W. Nowacki, ttomogene Raumteflnng und Kristallstruktur. Ziirieh, 1935, 
p. 48. 

W. Barlow, Zeits. Kryst. Min., 1894, vol. 23, p. 1 ; Proc. Roy. Dublin Soe., 1898, 
n. ser., vol. 8, p. 527. 

The particular normals which are the digonal axes of the extended structure 
lie in the surface of the cells as indicated in fig. 7, which represents one of the 
models exhibited when the paper was read. 
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possible planes of reflection, and other symmetry elements are also 
potentially available. As will appear immediately, the question which 
and how few of all these potential elements are necessarily operative is 
automatically answered by the conditions of the problem. 

In  fig. 7, let A be a sphere-centre located on a digonal axis ;1 then the 
axis 1 will develop from it the point B. Axis 2 will carry B to C. We 
now have three sphere-centres A, B, C, defining a plane. Now by condi- 
tion (iv) a fourth centre must lie in this plane and also on the diameter 
(produced) of one of the existing spheres. C' is therefore a possible posi- 
tion. To carry C to C', two courses are open: either C may be reflected 
across the plane WXYZ, or the digonal axis no. 3 (i.e., WY) may be 
employed. But the first process leads merely to the development of a 
single sheet of spheres. On the other hand, by the operation of the 
digonal axis no. 3, C is carried to C', A to A',  and B to B', so that  a 
3-dimensional distribution of sphere-centres comes into being. 

The structure developed by repetition of these rotations is identical 
with that  of Heesch and Laves, having the density 0"056. (The points 
B, C, C', A',  for instance, are part  of a 2-point tetragonal screw such as 
is shown in plan in fig. 6.) This structure, first discovered by Heesch and 
Laves, is then the most open possible under the given conditions. 

I t  was necessary for the purposes of proof to employ digonal axes only ; 
but  now that  this is done we see that  of all the potential digonal axes 
those actually used are themselves distributed around threefold axes of 
rotation, and the sphere-centres are consequently similarly related. 

As the normals to the faces of the octahedron are threefold axes of 
rotation, a conveniently compact model of this structure can be made by 
preparing several equal truncated oetahedra, inscribing three circles (to 
represent spheres) on one hexagonal face of each octahedron, and fixing 
them together so that  each is connected to four others at faces tetra- 
hedrally related. Two such truncated octahedra are shown in fig. 8. 

1 In order that the spheres shall be in contact, A must bisect the long face 
diagonal in the ratio 0.758 : 0.875. 


