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Angular relations between equivalent planes and distances 
between equivalent points in symmetrical point groups 

By PAUL NIGGLI 

(Ziirich). 

A FUNDAMENTAL problem arising out of the study of symmetrical 
point groups can be formulated as follows: Let N points in three- 

dimensional space be connected two and two in every possible way by 
straight lines: what relations must exist between the lengths of these 
lines if the points are equivalent members of a symmetrical point group ? 

The methods of projection used in crystallography (e.g. the stereo- 
graphic projection) at once show that the points may be considered to 
be the images of straight lines or planes. The problem formulated above 
has therefore a direct application to descriptive crystallography and can 
in this connexion be stated as follows: 

A complex of N planes is determined by the points of intersection of 
the normals with the surface of a unit sphere, i.e. by their poles. What 
now must the angular relations between the planes be if all are equivalent, 
that  is to say, belong to one and the same simple form ? 

The connecting lines between the points are in this case replaced by 
the angles between the normals of the planes, and in treating this problem 
it will be useful to substitute these angles by their characteristic cosine 
values. 

I f  we proceed from any one plane and determine the angles between 
its normal and those of the (N-- l )  other planes, it is obvious that these 
will only be equivalent to the first if certain quite specific relations exist 
between the angles (or their cosines). These relations we desire to express 
in formulae. 

If  all N planes are equivalent, it is, of course, immaterial which we 
select as the point of departure. Let the planes be numbered from 1 to 
N and the cosines of the angles between all possible pairs of planes be 
written in the form of a square matrix. Every row and every column of 
the matrix must now contain all the cosine values which differ from one 
another. When written in the usual way, the matrix possesses symmetri- 
cal structure in respect to the chief diagonal which contains the values 
cos 0 ~  1. With this fundamental condition others are associated 
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which determine the symmetry and the special character of the form 
constituted by the equivalent planes. 

The position of a pole in respect to the elements of symmetry passing 
through the centre of the sphere determines the position of the remain- 
ing poles and therefore also the angles between the planes. Let the 
:position of the first pole be expressed in terms of the usual co-ordinate 
angles r and p. This is shown in fig. 1 for the complex of planes con- 
stituting a dihexagonal pyramid. Our problem now consists in express- 
ing the cosines of the angles between plane 1 and the (N-- l )  other 
planes in terms of the r and p-values of the plane of departure. 

/ 

Fie. 1. 

In order to obtain the matrix in an easily defined form, it is proposed 
to use the groupings into cycles commonly employed in the investigation 
of symmetry. The study of point symmetry leads, as is well known, to 
the distinction of three principal eases: (1) symmetries with a unique 
axis (including the orthorhombie, monoclinic, and triclinic symmetries 
as trivial specializations); (2) the isometric cubic symmetries; (3) the 
isometric symmetries. 

1. Matrix reyr~entation of symmetries with a unique axis. 

In symmetries of this sort we select the highest rotation cycles and 
proceed to number the poles anti-clockwise from 1 to n, n being the 
valency of the axis. The unique axis as the rotation axis with the 
highest valency having thus the valency n, the number of equivalent 
elements in the derived symmetry groups can at most be 4n ~ N. For 
instance, n planes of symmetry parallel to the unique axis, or n binary 
axes perpendicular to the same, or a centre of symmetry, or a plane of 
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symmetry perpendicular to the unique axis may be present. I f  N = 4n, 
which implies that  the group has holohedral character, the total matrix 
may be resolved into 4 • 4 submatriees comprising n • n constituents. 

Let the n poles required to augment an n-gonal pyramid to a di-n-gonal 
one be termed 1 ' . . . x ' . . . n ' ,  the count  being taken in the same anti- 
clockwise Sense as hitherto (see fig. ]). Further let the mirror images of 
1 . . . x . . . n  with respect to planes of symmetry perpendicular to the 
unique axis be called (1 ) . . . (x ) . . . (n )  and those of 1 ' . . . x ' . . . n '  bear the 
numbers ( 1 ' ) . . . ( x ' ) . . . ( n ' ) .  For the dihexagonal bipyramid, for 

FIG. 2. 

instance, fig. 2 with its poles on the lower half of the sphere must now 
be considered in conjunction with fig. 1. A summary of the possible 
forms resulting from n = 6 can at once be given as follows: 

1 2 3 4 5 6 = the hexagonal pyramid or when p = 90 ~ the hexagonal 
prism. 

1 2 3 4 5 6 together with 1' 2' 3' 4' 5' 6' = the dihexagonal pyramid 
or when p = 90 ~ the dihexagonal prism. 

1 2 3 4 5 6 together with (1) (2) (3) (4) (5) (6) = the hexagonal bi- 
pyramid. 

1 2 3 4 5 6 together with (l') (2') (3') (4') (5') (6') = the hexagonal 
trapezohedron. 

1 2 3 4 5 6 together with 1' 2' 3' 4' 5' 6' and (1) (2) (3) (4) (5) (6) and 
(1') (2') (3') (4') (5') (6') = the dihexagonaI bipyramid. 

I f  the n of a rotation cycle be even, the cycle can be used to derive the 
n/2-gonal classes of symmetry. We obtain for instance: 
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1 3 5 = the trigonal pyramid or when p = 90 ~ the trigonal prism. 

1 3 5 (1) (3) (5) = the trigonal bipyramid. 

1 3 5 1 ' 3 ' 5 ' = t h e  ditrigonal pyramid or when p = 9 0  ~ the di- 
trigonal prism. 

1 3 5 1' 3' 5' (1) (3) (5) (1') (3') (5') = the ditrigonal bipyramid. 

1 3 5 (2) (4) (6) the rhombohedron. 

1 3 5 1' 3" 5' (2) (4) (6) (2') (4') (6') the ditrigonal scalenohedron, etc. 

With p = 0 the formulae will becom e simpler and lead to forms con- 
sisting of one plane (pedion) or two planes (pinacoids) respectively. 

In  a matrix comprising the cosines appropriate to any given n, all 
forms pertaining to a symmetry class with a unique axis are, therefore, 
characterized by the angles between the various planes of the form. 
This is true whether the  class of symmetry is a crystallographically 
possible one or not. A general representation of such a matrix of cosine 
values is given in table I a. 

T A B L E  I a .  S y m b o l s  o f  t h e  c o s i n e  v a l u e s  o c c u r r i n g  i n  t h e  h o l o h e d r a l  c l a s s e s  

o f  s y m m e t r y  w i t h  a u n i q u e  a x i s .  

1 2 . . .  n - - 1  n 1 '  2 '  . . .  ( n ' - - l )  n-- 

(~o) 

I Ii 
n 2 - 1  a~ a s  . . .  1 ~ ,  8 ]  83 . . .  80 81 

n =~ a ,  . . .  a I 1 8 ,  B2 . - .  # r  8o 

1"  

2 '  

n ' ' - - I  
n ~ 

(1) 
(?)  

( n - - l )  
(n) 
(1') 
(~.,) 

( n '  - - 1 )  
(n') 

I I '  
& ... 8o 

& & ...  8~ 

ao al  . . .  a~ 
a l  ao .. .  a~ 

I I I  
a~ a s  . . .  ao 
a I a ,  . . .  a r 

bo b T .. .  b~ 
b~ bo .. .  ba 

IV" 
b~ bi  . . .  bo 

b~ . . .  b~ 

81 1 
8~ ct I 

8i % 
80 ~1 

a i  ! bo 
b~ 

ax b~ 
ao bl 

b~ i ao 
b2 az~ 

br l a ,  
bo al  

i . . .  a ,  a ,  
I 

a s . . .  1 ~i 

a s . . .  a T 1 

bx . . .  ~ b I 
bo .. .  b~ b~ 

I V  
bs . . .  bo b, 
b2 . . .  br  bo 

a l  . . .  a~ a 1 
ao .. .  a ,  

I I I  
aa  .. .  a o '  a t  
az ... a1 ao 

(1) (2)  . . .  ( n - - l )  (n)  

ao az a~ a r 

aa- ao ~ a~ a ,  

a2 a s  . .  * ao a 1 

ax az . . .  a,r ao 

bo br . . .  b s b~ 
bz bo ~ ,  bs b$ 

b~ b~ . . .  bo bi 
b r '  b~ .. .  b~ bo 

1 ~1 . . .  a ,  a I 
a I 1 .~. a~ a~ 

a~ as  . . .  i ai  

al ~2 "'" ~ I  1 

80 8 I  "'" 82 81 

& & . . .  & & 

09 (29 ... (n'-l) 
bo b~ . . .  b~ 

b1 bo i v  
b 2 bs . . .  bo 
bl b~ ... b1 

ao a t  *.- a ,  

gz a8 . . .  ao 
th a2 . . .  err 

8o & . . .  I% 

8i 80 "ii 8, 
82 8 ,  . . .  8o 
& 8~ ... & 

1 r 1 . . .  a ~  

a i 1 "i" ce~ 

a 2 c% . . .  I 

~1 a z  - �9 �9 c~T 

Let the cosines of the angles between the poles 1 and x in the series 
1 . . . x . . . n  be symbolized by a~_ 1. I f  the angle between the poles 1 
and x is greater when measured anti-clockwise, the expression a~-l-~ is 
used in order always to operate with the cosine of the smaller angle. 
Thus Otn_ 1 = ~ i ,  O~n--2 ~ Ot~ e t c .  
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Similarly, the cosines of the angles between the poles 1 and x'  are 
symbolized by  flX'--I o r  flx'-l-~, those of the angles between l and (x) by 
%-1 or ax- l -n ,  and, finally, those of the angles between 1 and (x') by 
bx_ 1 or  bx_l_ n. 

I f n  is even, the angles between 1 and n/2 or 1 and n'/2 or 1 and (n/2) or 
1 and (n'/2) separate the positive and negative index values. Assuming 
all points or planes to be equivalent, every row or column of a sub- 
matr ix  

]]~k[I or [la~kll or II/~kH or ]]b~kll 

evidently contains the same number of and at  most n different cosine 
values. Also the relation obtains 

a ~ = a ~ ( e . g . a  2=am)  and a ~ = a  s ( e . g . a  l = a y ) .  

The square submatrices I and II1 which each appear  four times in the  
holohedral general matr ix  are thus symmetrical  in themselves. There- 
fore when n is even, the subsquares I can by their very nature contain a t  
most n/2 different cosine values. These include % representing the 
value of cos 0 ~ = 1 = eosep+sinep and an/2 representing the value of  
cos 2 0 = eos2p-- sin2p. I f  n is odd, the last-named value does not  occur 
and the number of different eosine values is 1 + ( n - I ) / 2 .  

In  the subsquare I I I  the  number of different cosine values is the same. 
However, a o = cos(~: 1 to (1)) = eos2p+sin2p and a~/2= --1. The 
lat ter  value does not  oecur when n is odd. Quite generally 

i.  360 
a~ = ~ = e o s 2 p + s i n 2 p . c o s - -  

n 

i .  360 
and a~ = a~ = -- cos2p § sin~p, cos 

n 

In  the submatrices I the sum of all cosine values belonging to one row 
or column (i.e. ~ a~) is given by n cosep, for the sum cos{ (i.360/n) }of 
the angles derived from one rotat ion axis is always zero. Similarly, the  
sum ~ a~ of any row or column is - -n  cos~#. 

The submatrices or subsquares containing the n~ or % values each 
give rise to two matrices, namely, I I  and I I '  and IV and IV '  respectively, 
of which the primed ones are conjugated to the non-primed. The sub- 
matrices I I ,  I I ' ,  and IV, IV '  each contain at  most n different cosine 
values which occur once in each row and column. 

rio is cosep + sin"p cos 2r 

and when n is even 

fi~/2 =/~ /2  = c~ sin~p cos 2r 
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b 0 is --cos2p+sin2p cos 2r and when ;~ is even, 

b~/2  = hi;~2 --cos2p sin2pcos 2~. 

fli no longer equals fiT, nor is bi = b 7. The values of these expressions 
are now given by 

~ l i  360 \ 
fi~-= c~176 n - - 2 r  

2 �9 2 [ i .  360 
b ~ -  c ~ 1 7 6  n + 2 r  

o i .  b~ _cos ,p+s ln2pcos(  360n 
] 

I t  can, however, easily be shown that  the following relations still 
obtain : 

Stun of all the cosine values in any row or column of I I  or I I '  

= n COS2p. 

Stun of all the cosine values in any row or column of IV or IV '  

= - -  n COS2p 

These conditions and the arrangement of the minor squares show that  
the general holohedral matrix possesses centrosymmetrical structure. 
The chief diagonals contain only ones and the trace has the value hr. 
Table I b gives a summary of these results. 

TABLE I b. 
General formulae for the Specal case for Special case applicable 

cosine values, identity,  only when n is even. 

~•  ~ cos~p~sin2P e o s ~ - -  ~o = 1 an/2 = eos2p--sin2p 
n 

~:t_i = cos2p+sin~p cOs ~ n - ~ 2 r  Bo = eos~p+sin2ocos2r t~,12 = eos2o--sin~peos2r 

.27r 
a •  ~ --cosep+sin2p cos t - -  a0 = --eos2p+sin2p an/2 ~ - - 1  

( ")~lt ) b ~  -e~ bnlz = - - c ~  b=i=i = - - c o s 2 p T s i n ~ p c o s  i --2 • 1 6 2  
sin2p cos 2r 

I f  the arrangement of the points or planes n is centrosymmetrical,  
each positive cosine value requires the presence of an equal negative 
cosine value. When n is even, the corresponding values may be ex- 
pressed as 

i. 360 i ' .  360 
�9 cos2p + sin2p cos and -- cos2p § sin2p c o s - -  

n n 



S Y M M E T R I C A L  I ~ O I N T  G R O U P S  3 1 9  

in which i '  = n/2+i.  We now, however, write i instead of i '  and 
~ n / 2 - ~ .  Thus with n = 6 we obtain the value 

1. 360 (3-4-1). 360 2. 360 
C O S - -  ~ - - C O S - -  - -  COS 

6 6 6 

Therefore a~ = --~1' 

Let the total  number of different cosine values be Z and the number 
of cosines different in absolute value only (i.e. irrespective of signs) be z. 
The following relations can now be established in the series. 

n divisible by 4. Beside 1, 1, 0, 0 the other values appear twice with 
positive and twice with negative signs, z is therefore given by 

n - 4  n + 4  
- - + 2  = 

4 4 

For instance, i~ the case of a 12-fold axis the cos { (i. 360)/12 } are as follows: 

1 0.866 0.5 0 --0.5 --0.866 --1 --0"866 

--0.5 0 0.5 0.866. 

n only divisible by 2. Beside 1 and i every other cosine value appears 
twice with positive and twice with negative sign: The total number  of 
numerical values cos{(i.360)/n} (irrespective of signs) is 

n - -2  n §  
z - -  ~ - 1 - -  

4 4 
the series eos{(i.a60)/6} the values are: 

1 0"5 --0"5 --1 --0"5 0"5. 

n odd. Beside 1 every other cosine value appears twice with the same 
sign. Although a given positive numerical value no longer leads to the 
corresponding negative numerical value, the expression cos{ (i. 360)/n} 
(in which i varies from 0 to n - - l )  remains zero. 

As a result of the conditions contained in the above formulae, the entire 
range of cosine values contained in the matrix consists of functions of 
p, r or of these and 2r Naturally the following relations obtain: 

/i. 360 ~ i. c o s ( ~ - -  -~- 2r ~ cos 360n cos 2r  sin l" 360n sin 2r 

e~ i" 3 6 0 -  2r ~--c~ i" 360 C ~  2r +s in  i" 360 s i n n  2r 

In terms of the theory of matrices the results obtained in connexion 
with forms deriving from symmetry  with a unique axis may be sum- 
marized as follows: 
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Square N-rowed matrix for holohedral classes with a unique di-n-gonal 

lie ii  iiiv 
IIg~llN = I I '  I IV '  I I I  N = 4 n  

I I I  IV I I I  

IV '  I I I  I I '  I 

with square n-rowed submatrices as constituents:  

I = sin~olla~l I ~-4- cos=ollc~l [~ 
i i  = singllb~klI~+cos=ol[c~ll~ 
I I '  = sin=p]]bk~ll,~+cos2pllcik]h, 

I I I  = singl!b~kll,~-cos=p]lc,~ll. 

IV = sin=t,I Ib,~ll .-  cos=pI Ic~l I- 
IV' = sin=MI b~ l I - -  ~176 ~ I I,~ 

a~k = c o s  k-- i )  ; c~ = 1 

r 9.~ -] 
b~k = c o s [ ( k - i ) : ~ i 2 r  w i t h +  for k > ~ i ,  

I lbkill,, is the transposed form of IIbi~ I[~. Therefore I I '  and IV '  are the 
transposed forms of I I  and IV. 

Because gii = 1, the trace of Hg~k[IN = N. 
The necessary and sufficient conditions have now been given which 

must  be fulfilled by  the cosine values of the angles between any plane 
and the other equivalent ones if the general matr ix  figure 1 is to possess 
the symmetry  corresponding to forms with a unique axis. No distinction 
has been made between crystallographic and non-crystallographic forms. 
The results may  briefly be s ta ted as follows: 

Equipoints as in the di-n-gonal bipyramid. The matr ix  contains the 
I-, IL~ I I ' - ,  I I I - ,  IV-, IV%quar t s .  The sum of the consti tuents in each 
row or column is zero. 

Equipoints as in the n-gonal bipyramid. The matr ix  contains two 
I-  and two III-squares.  The sum of the constituents in each row or 
column is zero. 

Equipoints as in the n-gonal trapezohedron. The matr ix  contains two 
I-, one IV-, and one IV'-square.  The sum of s constituents in each 
row or column is zero. 

Equipoints as in the di-n-gonal pyramid. The matr ix  contains I-, I I- ,  
I I ' - ,  I-squares. The sum of the constituents in each row or column is 
2n cos=p. For  the di-n-gonal prism cos p = 0 and the sum of the 
constituents in each row or column again becomes zero. 
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Equipoints as in the n-gonal pyramid. The matrix contains only I. 
The number of different values is ~/2 or (~-i-1)'2. The sum of the con- 
stituents ill each row or column is n cos2p and zero for the ~-gonal prism. 
For matrices corresponding to scalenohedra and strcptohedra (e.g. 
rhombohedra) see page 316. 

T. Liebisch 1 considered the angles 1/1' a n d  also 1/u' and 1/(1) as 
fundamentally important for di-n-gonal di-pyramids. They can be 
deduced 2 from our general formulae for any given ~ and as fnnctions of 
~b and p. The same applies to all fundamental angles of forms deriving 
from symmetry with a unique axis. I t  is equally easy to determine the 
distances between equivalent points arranged around a central point. 
This is an important problem in the investigation of co-ordination 
patterns within crystal structures. For this purpose the distance of a 
point from the chief point of symmetry is taken as 1. I f  the lines between 
equivalent points and the chief point of symmetry coniprise the angle e, 
the square of the distance between the points is then d~ s = 2 - 2  cos e. 
For cos �9 we can substitute the ~ - ,  f i r ,  a~-, b~-values. If  in a general 
matrix containing the de-values, the sum of the cosines be zero (when 
ai, fli, al, b~ are the constituents of the rows and columns), then the 
matrix of the d%values nmst consist of numbers whose sum in each row 
or colunm of the subsquares is 2'~. This is true for all non-polar forms. 
For groups corresponding to the di-~-gonal all-pyramid the ~ums of the 
rows or columns containing d2-values is 8~. 

x Theodor  Liebisch,  Geomet r i sehe  Krys t a l l og raph i e .  Ldipzig, 188], p. 223. 
2 The  fol lowing fo rmulae  are  conven ien t  in ca lcu la t ions  connec ted  wi th  forms 

d e r i v i n g  f rom s y m m e t r y  wi th  a un ique  axis .  

27r. 
~1--CO82p - " sin-"p cos - - ,  fl0--cos2p sin-"p cos 2~ 

(1 :ao)COS2~b. 2f10 i a0--1  :-- 2bo--a o!  I 

(1 ! ao)COS27 2~ t ~-ao--1 2 a l - - a  o , 1  

I t  therefore  follows t h a t :  

a i  = ~ i + a 0  ~-I; bf : fli ! a0 - -1 ;  bo ~o : ao - - ] ,  etc.  
27r 

The  r angles  and  c o s - -  can  each  be ca lcu la t ed  f rom two angu l a r  values .  As  

cos - -2  ~a cos ~ 2 =-: 2 ('~s - -  cos 2q~, 

fu r the r  eqt~ations can  be der ived .  
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The characteristic values for n = 6 in both representations are given 
in the top rows of tables I I  and III .  

TA~L'~ II 
C o s i n e  v a l u e s  o f  t h e  a n g l e s  f o r  n = 6. 

I 
1 2 3 

1 1 costp + �89 sin 'p cos'p --�89 stn 'p 

4 5 6 

cos 'p- -s ln tp  cos 'p- -6  s in 'p  c o s ' p +  �89 s in 'p  

I I  
1' 2" 3' 

cos tp+s in tp  cos 2~b cOS'p + s ln 'p  cos(60 + 2r costp + s in 'p  cos(120 + 2~b) 

4" 5' 6' 

cos"p - - s in 'p  cos 2r cos'p + sin=p cos(120 -- 2r cosfp + sin=p cos(60 - -2r  

I I I  
(I)  (2) (3) 

1 sin 'p  - cos~p - cos'p + �89 s ln 'p  - cos'p - | slnap 

(4) (5) (6) 

�9 1 -- 1 - -cos 'p - -  ] s in 'p  - - c o s ' p +  �89 stn 'p 

I V  
(Y) (2') (39 

1 - - c o s ' p + s i n ' p  cos 2~b -- cos'p + s ln 'p  cos(60 + 2~b) --cosSp + sin 'p cos(120 + 2~b) 

(4') (5") (69 

1 - - cos ' p - - s in ' p  cos 2~b -- cosSp + slnSp cos(120 -- 2r -- costp + slnSp cos(60 -- 2r 

TABr,~ I I I  

d 2 - v a l u e s  f o r  n = 6 ( s q u a r e s  o f  t h e  d i s t a n c e s  o f  e q u i v a l e n t  p o i n t s )  o n  

s p h e r e  w i t h  u n i t  r a d i u s .  

I 
1 2 3 4 5 6 

1 0 s in 'p  3 s in 'p  4 s tn 'p  3 stnap sinsp 

I I  
1' 2" 3' 

1 2 s i n ' p ( 1 - c o s  2r 2 sin'p[1 - c o s ( 6 0  + 2r 2 sintp[1 - cos(120 + 2r 

4" 5' 6" 

1 2 sintp(1 + cos 2r 2 sln'p[1 - c o s ( 1 2 0 -  2r 2 sin 'p[ 1 -  cos(60 --2q~)] 

I I I  
( I )  (2) (3) (4) (5) (6) 

1 4 costp 1 + 3 cos'p 3 + cos'p 4 3 -1- cosSp 1 -]- 3 cos'p 

I V  

( l ' )  (2') (33 

1 4--2sin'p(l+cos2r 4 --2 s in 'p[ l  + cos(60"- 2r 4--2sin'p[l+cos(120+2r 
(43 (5') (6') 

1 4--2  sin'p(1-- cos 2r 4 -- 2 slnSp[l + cos(120 -- 2r 4 -- 2 slntp[l + cos(60 -- 2~b)] 
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In the case of n = 6, simpler expressions can be obtained by making 
use of the relations 

cos(120+2r = --cos(60-2r cos(60+2r = -cos(120-2r  

Also, of course, cosep can be recalculated in tcrms of siu~p and vice versa. 

2. Matrix representation for isometric symmetry 

Beside the point symmetries characterized by the matrix table Ia ,  
the following additional equivalent point symmetries now occur: 

in cubic symmetry: N = 4, 6, 8, 12, 24, 48 

in icosahedral symmetry: N = 12, 20, 30, 60, 120. 

The special forms of the matrix can be deduced for these cases also, but 
here it is not proposed to go beyond a general discussion of the forms 
deriving from cubic symmetry. 

In the case of the cubic 48-point group we restrict ourselves to giving 
the cosine values of the top row of the complete matrix out of which 
everything else follows. The crystallographer will easily follow the 
sequence used here if the indices of the planes are states whose angles 
with hkl correspond to the given cosines (table IVa). However, the 

T~BLE IV a 

Top row of  the  subsqua rcs  I - I V  for cubic  48-point  g roup  
Number 

Cosine of the angle of differ- 
included between ent z 
h k l and: values 

I Cosine A~ Bo B~ A~ B~ B~ A~ B~ B a A, B, g l  8 
( symbol 

~ "t~ ~%7 ~lk 7kh iiht hTk l~h i,~t 1~l~ Zk% kh-I 
I I  Cosine 

symbol C~ C2 Ca D~ Ez Ea E~ D2 F~a E~ Ez Da 9 

I I I  Cosine 
symbol --Ao --Bo --B, --A~ - B ,  -B~ --A~ --B~ --B, --A, --B2 --B~ 8 

--E~ --E~ --D, 9 IV { Cosine 
symbol --C1 -C2 --Cs --D1 --E2 - E 3  --E~ --Da --E3 

rules apply quite irrespectively of the rationality of the indices. [ con- 
tains the tetartohedral equipoints which together with II  produce the 
enantiomorphic, with I I I  the paramorphic, and with IV the hemimorphic 
classes of symmetry. ] to IV are required for cubic holohedral symmetry. 
Where the same numerical values with negative signs occur ill different 
submatrices, the same letter preceded by a negative sign has been used 
for the cosine. It  is apparent that the 48-point form possesses 17 
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different values, each appearing positive and negative. Thus there are 
34 angular values in all. The matr ix  of the cubic holohedral 48-plane 
form (or point  group) contains as submatrices all the matrices of the 
subgroups contained in the group and belonging to the cubic hypo- 
syngony. The ~- and p- values of the plane of departure are, of course, 
those  corresponding to the cubic setting. The composit, ion of the top 
row in the matr ix  in each individual case can be taken from table IV b 
in which N, Z, and z of the general form or point  group arc given. 

TABLr. IV b. Values for the subgroups of O h 
N Z z 

Oh I I I  I I I  IV 48 34 17 
O I I I  24 17 17 
T d I ]V 24 17 17 
T h I I I I  24 16 8 
T I 12 8 8 
D4h =Ao Ax Az As Cs Ds Es 16 14 7 
D, +Ao A1 As As Ca Ds Es 8 7 7 
C4h ~Ao As Ea 8 6 3 
C4v ~ A o  As E s - - A t  A2 Ca Ds 8 7 7 
D ~  +AD A1 A2 A s - - C  a D a E s 8 7 7 
C~ + A  o A s E s 4 3 3 
$4 +Ao A s - - E s  4 3 3 
D ~  _+.Ao At Az As 8 8 4 
D2 + A o  A1 Az As 4 4 4 
C2 v + A  o A s - - A  x A~ 4 4 4 
C2h § Ao A2 4 4 2 
C~ --Ao Az 2 2 2 
C s + A o - - A s  2 2 2 
C~ :k A o 2 2 1 
C t + A  o 1 1 1 

D3d •  0 B o C x C z C s 12 10 5 
Ds +Ao Bo C1 C2 Cs 6 5 5 
Csv -! A o Bo--C t C~ C a 6 5 5 
Cs~ ::t:Ao Bo 6 4 2 
Ca -r Bo 3 2 2 

The composition of the cosine values symbolized by  Ai ,  Bi ,  C~, Di,  .Ei 

is given in table V which consists of four parts.  Of these section (a) 
contains a number  of computat ion values which can usefully be derived 
at  the outset  of and used during a calculation. Section (b) then shows in 
what  manner the 17 cosine values derive from these prel iminary ones. 
The fornmlae are independent of the law of rationali ty,  but  section (c) 
of the table shows the connexions between h, k, and l and the product  
of two indices on the one hand, and the r p-values on the other in 
cases where the law is applicable. In substi tut ing for other planes due 
care must be given to the signs and sequences of the indices. 
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The cosines of the angles between (hkl) and the other equivalent 
rational planes can, as shown by section (c) of table V, always be written 
in the form N/(h2-~k2+12) in which N can assume the various values 
given in section (d) of table V. 

T ~ B L E  V.  ( E x p l a i n i n g  T a b l e  I V )  
(a)  C o m p u t a t i o n  v a l u e s  

p = cos~p r = s in=ps in~  

q = sinSp cos=r s = sin~p cos 2~b 

(b) F o r m a t i o n  o f  the  cos ine  v a l u e s  

Ao  = 1 ~o  ~ = � 8 9  

A t  = - ~ o - 8  B1 = � 8 9  

A= = - - ~ + s  ~= = � 8 9  

A ,  = w B~  = � 8 9  

(c)  I n d i c e s  e xpre s sed  i n  p a n d  ~ 

h2 = sin2p sin=r ( h ~ + k S - ~ l  ~) 

k s = s i n=p  cos2r (h=+k=+l=) 
l= = cos~p (h= + k= + l =) 

= sin=p sin 2~b v = sin 2p sin r 

U = sin 2p COS ~b W = COS 2p = COS~p--shl2p 

C~ = - - r - u  D a  = - - p + t  

~ = - - q - v  E~  = r 

C a  = - - p - - $  E 2  = q 

1)~ = - - r  -b  u 1~ , = p 

D 2  = - - q + v  

k l  = �89 sin 2p cos r ( h ~ + k ~ + l ~ )  

lh  = �89 sin 2p sin r ( h = + k ~ + P )  

h k  = �89 sin2p Sin 2~b (h~- { -k~+l  ~) 

(d)  C a l c u l a t i o n s  o f  the cos ine  v a l u e s  f o r  jo~anes w i t h  r a t i o n a l  i nd ices .  V a l u e  o f  

1~ i n  N 1g(Bo) = k l + l h + h k *  ~V(C~) = - - h = - - 2 k l  N ( D a )  = - - l = +  2 h b  

h = + k = + l  ~ N ( B 1 )  = k l - - l h - - h k *  N(C2) = - - k = - - 2 1 h  N ( E I )  = h I* 

N ( A o )  = h ~ + k ~ + l ~  N ( B 2 )  = - - k l + l h - h k *  N ( C s )  = - - l ~ - - 2 h b  N ( E = )  = k I* 

~V(AI)  = h ~ - - k ~ - - I  ~ N ( B s )  = - - k l - - l h  + h k *  N ( D x )  = - - h 2 +  2k l  N ( E s )  = l s* 

N ( A ~ )  = - - h ~ +  k ~ - - I  ~ N ( D = )  = - - k = +  21h 

N ( A  s) = - - h  8 - k 2 + l ~ 
* Can be formed in two different  ways.  

For the transitional ~and special forms of the cubic system new condi- 
tions arise. They appear whenever p or r or both assume special values. 
Table VI contains all the necessary data. Of course the matrices corre- 
sponding to cases with N < 48 (e.g. 6, 12, 4, 8, 24) are correspondingly 
smaller. The complete mat r ix  representation is only required for the 
hexahedral, tetrahedral, octahedral, and rhombic-dodecahedral point 
groups in which the angular values are uniquely determined. Tables 
VII,  VIII ,  and IX  give these matrices in the order selected for the 
48-point group. 

A quite similar treatment can be devoted to the ieosahedral group, 
but the comparative unimportance of the 20-, 30-, 60-, and 120-point 
groups does not warrant their discussion in tlfis paper. 

The regular pentagonal dodecahedron of I and Ih which oan also appear 
as a non-crystallographical form in T and Th,'has as p-value 90  ~ a n d  a s  

C-values 3],~ 43' or 180 ~ --31 ~ 43'. Five neighbouring planes form angles 
of 63 ~ 26' with each plane of the regular pentagonal dodecahedron. As 

cos  2 ~  = �89 s in  2 ~ ,  A x = B 1 = B 2 ----- - 0 . 4 4 7 3  

a n d  A 2 ---- B o = B a = 0 . 4 4 7 3  (see t a b l e  V I ,  c o l  4) .  
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TABLE VII.  Hexahedral  matr ix .  (Cosine values.) 

0 0 1  010 100 00]- 010 100 
1 2 3 4 5 6 

1 I 1 0 0 - 1  0 0 
2 I 0 1 0 0 --  l o 
3 0 0 1 0 0 - 1 
4 --1 0 0 1 0 ' 0 
5 i o - - 1 o o 1 o 
6 I, 0 0 --  1 0 0 1 
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TABLE VIII .  TetrahcdrM and oetMmdral matr ix .  (Cosine values.) 

I 1 II  

111 111 I l l  I l l '  ]. 1 111 I l l  11[ 
1 2 3 4 15 6 7 8 

_ ~  _ 1  - I  - I  t ~ �89 {'', } I 2 ,--�89 1 ---~ - -1 ~ I It  
a ~ - ~  1 i - 1  
4 - - � 8 9  - t  1 ~ I ~ -1  

0 �89 - t  l t - ~  1 - I - .~ 
n 7 , �89 �89 - 1  l -- t  i - ~  I 

! I l [  

i =- Tetrahedron.  I i I I  Oetahedron 

TauLn IX. Rhombic  dodecahedral matr ix .  (Cosine values.) 
011 110 101 011 110 10[ 011 [10 "[0[ ( )11  1~0 [01 

1 2 3 4 5 6 7 8 9 10 l 1 12 

8 
9 --�89 --�89 - -1  �89 --�89 0 ~ �89 1 --�89 

10 0 - - i  �89 0 } - -~  --1 - �89 --~ 1 
l l  --�89 --1 --~ } 0 --�89 --�89 0 �89 
12 ~. --�89 0 --�89 - -~ --1 --�89 �89 0 �89 

l ,1 ~ - 1  - � 8 9  - ~  o i - � 8 9  o - }  
�89 1 �89 - � 8 9  o �89 } o - ~ .  - .~  - 1 - � 8 9  
~t 1 1 - � 8 9  �89 o --�89 - i  -1 �89 --�89 o 

--1 - -~  --~t 1 �89 �89 0 ---~- �89 0 } --~ 
- -}  0 �89 �89 1 �89 - - }  - 1  --~- �89 0 --.~ 
- -~  �89 0 �89 ~t 1 �89 --�89 0 --�89 - �89 --1 

0 �89 --�89 0 --�89 } 1 i } - i  --~. --~ 
�89 0 --�89 - -~  - 1  --�89 ~. 1 ~ - - ~  0 �89 

�89 0 

t �89 
�89 1 

T h e r e  a r e  ill al l  o n l y  f o u r  d i f f e r e n t  a n g l e s  a n d  t h e  t o p  l ine  o f  t h e  m a t r i x  

in  t h e  u s u a l  a r r a n g e m e n t  t h e r e f o r e  r e a d s  as  fo l lows :  

A o B o B o ] A 1 B.~ --0B273.44 "43 B, B,  
1 0"4473 0.4473 !--0.4473 0-.t473 0.4473 --0.4473 0.4473 

A 3 B2 B1 
-- 1 - 0'4473 --0'4473 
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Z ~ 4, z ~ 2. The number of equations governing the conditions is 
four or twelve. 

We thus obtain an exact formulation of the laws to be obeyed by a normalized 
sequence of numbers in a square matrix i f  the matrix is to be an image of the 
properties of an equivalent complex within a symmetrical point group. 
This representation in matr ix  form is analogous to those called 'vector 
se ts '  and 'vector  set matr ices '  by  D. M. Wrinch 1 and M. J. Buerger 2 
respectively. However, the matrices employed here are restricted to 
angular  values or distances, i.e. to scalar quantities. The application 
of these methods to the symmetry  of vector set matrices of symmetrical  
point  groups presents no difficulties and would elaborate the remarks 
made by Buerger on this subject. 

1 D. M. Wrinch, Phil. Mag., 1939, vol. 27, p. 98. 
2 M. J. Buerger, Acta Cryst., Cambridge, 1950, vol. 3, p. 87. 


