Paralaurionite¹

By CHARLES PALACHE

(Harvard University, Cambridge, Massachusetts, U.S.A.).

Abstract: Paralaurionite from a new locality, the Mammoth mine, Arizona, is described. X-ray study and chemical analysis confirm the original characteristics of the mineral as described in 1899 by G. F. Herbert Smith. Measurements are given which establish new forms on crystals from Arizona and also on crystals from a South American locality. A complete angle table for twenty-eight forms is presented.

THIS rare oxychloride of lead was first described from the lead slags of Laurium, Greece, by G. F. Herbert Smith in this magazine in 1899. In the same year the mineral rafaelite was reported by Arzruni from Mina San Rafael, Sierra Gorda, Chile, but Smith quickly established the identity of the two substances. It proved to be not uncommon at Laurium, as shown by Descloizeaux and others. The proposal of Ktenas to consider it identical with laurionite whose orthorhombic form he thought due to submicroscopic twinning of plates of paralaurionite has not been accepted. Russell described its sparse occurrence at a locality in Cornwall. Except for a review of previous studies with some new observations by the writer, nothing has since been added to our knowledge of paralaurionite. This review, which includes full references to all papers above mentioned, appeared in this magazine in vol. 23, p. 573, 1934.

About 1942 paralaurionite was identified in a suite of minerals from the Mammoth mine, Tiger, Arizona. It was fairly abundant and was well crystallized. The following pages present the results of a study of these specimens; at the same time measurable crystals of so-called rafaelite were found on a specimen of percylite labelled Caracoles, Bolivia (?), in the Harvard Mineralogical Museum, and the measurements made upon them are also presented here.

Paralaurionite from the Mammoth mine.

The complex of lead and copper minerals found in the Collins vein of the Mammoth mine between the 300-foot and the 700-foot levels was preserved in very numerous specimens of which the Harvard Museum secured a fairly representative series. It includes galena and chalcocite, the original ores, in the form of remnants surrounded by oxidation products; for the most part the minerals present are secondary and in bewildering variety. No description of the suite as a whole has appeared

 1 Contribution from the Department of Mineralogy and Petrography, Harvard University,

in print; Dr. Harry Berman and the writer were engaged in their study when war intervened and Berman's untimely death in 1944 brought our work to an end. Only the three species diaboleite (1), dioptase (2), and wherryite (3) have been described in any detail. An alphabetical list will at least give some idea of the paragenesis but none at all of the brilliant colours, superb crystallization, and infinitely varied groupings of these minerals. Besides the primary sulphides and quartz there have been found:

Anglesite	Cerussite	Hemimorphite	Paralaurionite
Atacamite	Descloizite	Hydrocerussite	Phosgenite
Azurite	Diaboleite	Leadhillite	Vanadinite
Boleite	Dioptase	Linarite	Wherryite
Brochantite	Embolite	Malachite	Willemite
Caledonite	Fluorite	Matlockite	Wulfenite

Paralaurionite is one of the later minerals in this series. It occurs in slender isolated needles in cavities of cerussite; and in coarser crystal aggrégates, especially with leadhillite. The most notable specimen in our collection (101132) shows a surface 3 by 2 inches covered with bladed crystals of paralaurionite up to an inch in length and half an inch thick, which show well the characteristic fibration due to gliding under pressure. On them is a later generation of leadhillite.

No twin crystals were observed, a marked contrast to those from Laurium; and, too, the crystals, unlike the flat plates of Laurium, are elongated in the direction of the symmetry axis either as needles or as plates parallel to the pinacoid (100). Nine crystals were measured, all being set on the goniometer with the symmetry or *b*-axis vertical; that is, in the position of second inversion so that the resulting measurements are the angles ϕ_2 and ρ_2 of the form table. Their very high lustre resulted in reflections of the finest quality, so that even most minute facets gave accordant readings.

Paralaurionite, 'rafaelite', from Caracoles, Bolivia (?)¹

The specimen is a fairly large fragment consisting of massive dark blue percylite mixed with siliceous gangue matter; in small cavities tiny crystals of paralaurionite project from the walls. They have the pale lilac colour described as characteristic of the original rafaelite and the same elongation parallel to the symmetry axis. They were measured in the same position as were the Arizona crystals.

¹ The label of specimen no. 95812 is so given, but Bolivia is believed to be a mistake for Chile. No such locality as Caracoles was discoverable on our maps of Bolivia. On the other hand, the well-known mining locality of that name in Chile was probably the source of the original rafaelite.

342

PARALAURIONITE

Tabular presentation of the results of crystal measurements.

Table I shows the combinations of forms observed on the nine crystals from Arizona and the seven from South America measured. The last column gives the relative abundance of each form, including the only other important locality for the mineral, Laurium, Greece. The eleven new forms include several that are as common as those previously known.

Fo	rm.					M	cas	sur	eα	cr	yst	ais	•		_			
			Arizona 9 cryst.				Chile 7 cryst. 'Rafaelite'.					ys te'	t. '.	General frequency, all localities.				
c b a	001 010 100	x	x x	x x	x x x	x x x	x x	x	x x x	x x x	x x	x x	x x	x x	x	x x	x x	On all crystals Very rare On most crystals
r* m n	140 110 310		x x		x	x		x	x	x	x x	x x x	x x x	x x	x x	X X X	x x x	Rare On most crystals Rafaelite only
s* e f	203 201 401										x	x x		x x	x	x x	x x	,, ,, v. rare ,, ,, ,, ,,
u* g d	$\frac{\overline{1}02}{\overline{2}03}\\\overline{1}01$	x x	x x		x x	x		x x	x	x	x	x x		x x	x x x	x x	x x	,, ,, v. rare Common form ,, ,,
v* h w*	$ \overline{403} $ $ \overline{201} $ $ \overline{301} $	x x x	x	x	x x x	x x x	x	x x x	x x	x x	x	x		x	x	x	x x	Rare On most crystals Arizona only
k i l	$ \overline{401} 501 601 $	x x	x x	x x x	x x	x x			x	x	x			x x	х	x x		Common form Very rare Common form
o* p O*	$112 \\ 111 \\ \overline{1}12$	x	x x	x	x x x	x x		x	x x	x x x	x x	x	x	x	x	x x	x	Arizona only—rare On most crystals Common form
P* y t	111 411 511	x	x		х		x	x	x x	x	x x	x	x	x	x	x	x	", ", Rafaelite only, common Rare form
S* T* U*	$\frac{\overline{3}11}{\overline{5}11}$ $\overline{7}11$			x	x x	x x	x	x	x	x	x x	x x	x x	x	x	x x		Common form Arizona only Rafaelite only
						*	т	nd	:	+	f.				1 - 4	6	+ho	sporties

TABLE I.	Paralaurionite:	combinations	and frequency	of forms.
----------	-----------------	--------------	---------------	-----------

..

.

Indicates forms new to the species.

Table II contains the mean measured angles of the new forms, together with the range in position of each. Observed angles of forms previously known are not given. They were in excellent agreement with calculated angles.

No. of			Mean Po	osition.	Kange.					
F	orm.	faces.	Qual.	φ ₂	Pa	ϕ_2	ρ2			
r	140	5	good	0°00′	5°57′	0 00	5°50′-6°11′			
8	203	3	good	44 26	90 00	44°34′-45°30′	90 00			
u	$\overline{1}02$	3	fair	$820 \ 7\frac{1}{2}$	90-00	82 00-82 08	90 00			
v	$\overline{4}03$	5	poor	115 45	90 00	115 32-115 50	90 00			
w	301	8	fair	149 54	90 00	149 30-150 10	90 00			
0	112	4	poor	48 20	56 O3	48 07-48 38	55 45-56 25			
0	ī 12	4	good	82 06 1	48 13	81 33-82 43	47 55-48 36			
\mathbf{P}	111	5	good	$103 \ 13^{-1}$	29 43	102 48-103 38	29 28-30 17			
\mathbf{s}	311	7	good	$150 \ 06$	48 00	$149 \ 25 - 151 \ 01$	47 48-48 14			
т	$\overline{5}11$	7	v. good	162 45	61 59	$162 \ 23 - 162 \ 57$	61 47-61 58			
U	$\bar{7}11$	6	good	168 03	69 29	167 28-168 34	69 00-69 40			

TABLE II.	Paralaurionite: measured angles of	fnew forms (in position of 2nd inversion)
	Maan Desition	Dance

TABLE III. Paralaurionite, Pb(OH)Cl; angle table.

Monoclinic prismatic, 2/m.

	-	,										
a : b : c	2.70	52:1:	1.8090,	β12	17° 12	1; 1	$p_0:q_0$. : 7 0	= 0.6	687 :	1.6088	3:1;
$r_2: p_2: $	$q_2 = 0$	6216:0	•4157 : 3	l,μ=·	• 62° 4	ŧ7į′;	$p_0' 0$	·7519	, q_0' l	·8090), $x_0' = 0$	·5142.
Forms		φ		ρ	¢	2	P2	B	(С	Α	
c	001	90°00) 27	°12 <u>‡</u> ′	62	47 <u>‡</u> ′	90	·00′	-	_	62°	'47 <u>‡</u> '
b	D 10	0 0	0 90	00	•	_	0	00	90	°00′	90	00
a	100	90 0	0 90	00	0	00	90	00	62	47 1	0	00
г*	140	55	6 90	00	0	00	5	56	87	$17\frac{1}{2}$	84	04
m	110	22 3	4 1 90	00	0	00	22	34]	79	$53\frac{1}{2}$	67	$25\frac{1}{2}$
n	310	$51 \ 1$	6 1 90	00	0	00	51	$16\frac{1}{2}$	69	06	38	43 1
s*	203	90 0	0 45	26 1	44	33]	- 90	00	18	14	44	33 1
е	201	90 0	0 63	$38\overline{\frac{1}{2}}$	26	$21\frac{1}{2}$	90	00	36	26	26	$21\frac{1}{2}$
f	401	90 0	0 74	09	15	51^{-}	90	00	46	$56\frac{1}{2}$	15	51
u*	102	90-0	0 7	52 1	82	07¥	90	00	19	20	82	07 1
g	$\overline{2}03$	90 0	0 0	44]	89	15	90	00	26	28 1	89	15
ď	101	$-90 \ 0$	0 13	$22\overline{\frac{1}{2}}$	103	$22\frac{1}{2}$	90	00	40	35^{-}	103	$22\frac{1}{2}$
v*	4 03	-900	0 26	01 1	116	011	90	00	53	14	116	014
h	$\overline{2}01$	-900	0 44	42	134	42	90	00	71	54 1	134	42
w*	301	$-90 \ 0$	0 60	08	150	08	90	00	87	$20\frac{1}{2}$	150	08
k	$\bar{4}01$	90 0	0 68	09	158	09	90	00	95	21 1	158	09
i	501	$-90^{\circ}0$	0 72	521	162	521	90	00	100	05	162	52 1
1	6 01	-90 0	0 75	$57\frac{1}{2}$	165	·571	90	00	103	10	165	$57\frac{1}{2}$
i	801	$-90 \ 0$	0 79	42	169	42	90	00	106	541	169	42^{-}
• •*	112	44 3	21 51	451	48	191	55	57\$	36	381	56	34
р	111	34 5	9 j 65	38	38	18	41	$43\overline{i}$	52	43	58	30 1
 O*	ī 12	84	1 42	271	82	07¥	48	081	45	21	84	09
P*	ĪII	-72	9 61	161	103	22 1	29	361	67	$58^{}$	96	331
y	411	62 4	9 75	491	15	51	63	421	52	15 1	30	241
t	511	67 0	31 77	501	13	10	67	36	53	12	25	481
S*	311	-43 5	41 68	17	150	08	47	59	88	011	130	07
T*	511	-605	2^{2} 74	56	162	521	61	571	81	07	-147	301
U*	711	- 69 0	9 78	52	168	061	69	331	104	20	156	29
-		~~ ~	. 10		100	000		000			100	

Table III is a complete angle table for paralaurionite, none of this

PARALAURIONITE

type having hitherto been printed. It will be observed that the position and values of the crystal elements are those originally chosen by Smith, the correctness of this choice having been established by X-ray study.

The constants of the unit cell were determined by C. W. Wolfe (1945), in the Harvard Laboratory by the Weissenberg method. Space-group C 2/m; $a_0 = 10.77$, $b_0 = 3.97$, $c_0 = 7.18$ kX, $\beta = 117^{\circ} 13'$, hence $a_0 : b_0 : c_0$ = 2.713 : 1 : 1.809. Compare with these figures the morphological axial ratio a:b:c = 2.7052 : 1 : 1.8090, $\beta = 117^{\circ} 12\frac{1}{2}'$. Unit-cell contents Pb₄(OH)₄Cl₄.

Chemical composition.

The chemical composition of the Arizona paralaurionite was established by the analysis of column I below, made in 1948 by F. A. Gonyer of the Harvard staff. The calculated composition for the accepted formula, Pb(OH)Cl is given in column II.

		I	п
Pb		 77.75	79.80
Û	· · · ·	 6.00	3 ·08
Cl		 12.84	13.65
H ₂ O		 3.51	3.47
		100.10	100.00

I am indebted to Dr. C. W. Wolfe for the drawing of the crystal and for the X-ray measurements; and to Mr. Forest A. Gonyer for the. chemical analysis.

FIG. 1. Crystal of paralaurionite from Arizona. Forms: $c \ 001$, $a \ 100$, $m \ 110$, $h \ \overline{2}01$ $w \ \overline{3}01$, $o \ 112$, $p \ 111$, $P \ \overline{1}11$, $S \ \overline{3}11$, $T \ \overline{5}11$, of which w, o, P, S, and T are new.

References: (1) Diaboleite. C. Palache. Amer. Min. 1941, vol. 26, p. 605. [M.A. 8-215.]

- (2) Dioptase. F. W. Galbraith and T. H. Kuhn. Ibid., 1940, vol. 25, p. 708. [M.A. 8-224.]
- (3) Wherryite. J. J. Fahey, E. B. Daggatt, and S. G. Gordon. Ibid., 1950, vol. 35, p. 93. [M.A. 11-127.]