A serpentine mineral from Kennack Cove, Lizard, Cornuall. ${ }^{1}$

By H. G. Midgley, Ph.D., M.Sc., F.G.S.
Mineralogy Section, Building Research Station, Department of Scientific and Industrial Research.

[Read June 8, 1950.]

Introduction.-A white soapy mineral which could not easily be identified in the hand-specimen was collected from a vein in the serpentine rock at Kennack Cove, Lizard, in April 1949. From a preliminary optical examination the mineral was thought to be saponite, and therefore of interest to clay mineralogists. Chemical analysis, X-ray, thermal, and optical investigations were carried out at the Building Research Station.

Occurrence and optical data.-The mineral occurs in a vertical vein cutting the serpentine rock on the north-east side of Kennack Sands. The vein is about $2-3$ inches wide and shows up very white against the dark serpentine rock. The mineral is pure white in colour, soapy to the touch, and soft (H. 2). It is an irregular aggregate of small crystals, which are for the most part hexagonal plates. In thin section the mineral is seen to have a distinct basal cleavage and a birefringence of about 0.01 . Microscopical examination of powder specimens shows the plate-like habit of the grains, and also the presence of a second mineral which is probably talc. The plates, when lying flat, give a centred uniaxial negative interference figure. The mineral has $\epsilon 1.545$ and $\omega 1 \cdot 555, \omega-\epsilon 0 \cdot 01$. These optical properties may be easily confused with those of saponite. Chemical analysis (table II) or X-ray examination (table III) will, however, distinguish between these two minerals. Table I gives the optical properties, with those of saponite, chrysotile, and antigorite for comparison.

Table I. Comparison of optical data.

		Serpentine mineral.	Saponite.	Chrysotile.	Antigorite.
ϵ	\ldots	1.545	-	人 1.493-1.546	< 1.555-1.564
ω	\ldots	1.555	1.555	β 1-504-1.550	$\beta 1.562-1.573$
$\omega-\epsilon$	\ldots	$0 \cdot 01$	0.01 亡	$\gamma 1.517-1.557$	$\gamma 1.562-1.573$
2 V	\ldots	0°	0°	050°	20-90 ${ }^{\circ}$
Sign	\ldots	negative	negative	positive	negative

Chemical analysis.-The analysis (table II) calculated on the basis of 10 oxygens gives the formula $\mathrm{Mg}_{5 \cdot 6}(\mathrm{Si}, \mathrm{Al})_{4} \mathrm{O}_{10}(\mathrm{OH})_{7 \cdot 9}$. Making allowance for the talc impurity, it is probable that the mineral is analogous to either chrysotile or antigorite $\mathrm{Mg}_{6} \mathrm{Si}_{4} \mathrm{O}_{10}(\mathrm{OH})_{8}$, and so should be regarded as a serpentine mineral.
Table II. Chemical analysis of serpentine mineral from Kennack, Lizard. (Analyst, L. J. Larner.)

SiO_{2}	\ldots	\ldots	$44 \cdot 49$	CaO	\ldots	\ldots	$0 \cdot 03$
$\mathrm{Al}_{2} \mathrm{O}_{3}$	\ldots	\ldots	$2 \cdot 26$	TiO_{2}	\ldots	\ldots	0.03
MgO_{2}	\ldots	\ldots	$40 \cdot 27$	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	\ldots	\ldots	$0 \cdot 48$
$\mathrm{H}_{2} \mathrm{O}+$	\ldots	\ldots	$12 \cdot 80$				
							$\mathbf{1 0 0 \cdot 3 6}$

Thermal analysis.-A differential thermal analysis of a small sample was carred out by D. B. Honeyborne of the Building Research Station, and the resultant curve is reproduced as fig. 1. The curve is very like others obtained from some magnesium silicate minerals, for example antigorite. ${ }^{1}$

Fig. 1. Differential thermal analysis of serpentine mineral.
X-ray investigations.-Powder photographs and single-crystal rotation photographs of the serpentine mineral were taken. The powder photographs were taken on a $10-\mathrm{cm}$. camera using filtered $\mathrm{Cu}-\mathrm{K} \alpha$ radiation, $\lambda 1.5374 \AA$. The measurements of spacings are given in table III. A powder photograph of a sample of saponite ${ }^{2}$ from the Lizard (kindly

[^0]supplied by Dr. G. F. Walker) was also taken, and the spacings for this mineral are given for comparison, together with the spacings for chrysotile and antigorite as recorded by Selfridge. ${ }^{1}$ It can be seen that there is no resemblance between the serpentine mineral and the saponite; and that there is some resemblance between the chrysotile, antigorite, and the serpentine mineral, but not complete agreement.

Table III. Comparison of X-ray powder spacings and intensities.

Serpentine mineral		Chrysotile*		Antigorite*		Saponite	
$d_{h k l} \AA$ A.		$d_{k k l} \AA$.		$d_{h k l} \AA$.		$d_{h k l} \AA$.	
(9.4	5) \dagger	-		-		$18 \cdot 8$	10
7.51	10	$7 \cdot 364$	9	7.355	$8 \frac{1}{2}$	$9 \cdot 1$	5
$5 \cdot 20$	$\frac{1}{2}$	-		-		6.05	1
$4 \cdot 59$	5	4.431	6	4.668	4	$4 \cdot 54$	5
$3 \cdot 94$	$\frac{1}{2}$	-		-		$3 \cdot 605$	5
3.73	10	$3 \cdot 658$	91 ${ }^{1}$	$3 \cdot 641$	9	$3 \cdot 00$	4
3.105	3	-		-		-	
$2 \cdot 75$	1	-		-		-	
2.635	1	-		-		$2 \cdot 605$	6
$2 \cdot 580$	1	2.571	8	-		-	
$2 \cdot 490$	9	$2 \cdot 424$	8	2.558	10	$2 \cdot 48$	3
$2 \cdot 420$	1	-		-		-	
$2 \cdot 29$	$\frac{1}{2}$	-		-		$2 \cdot 26$	2
$2 \cdot 205$	$\frac{1}{2}$	-		-		-	
$2 \cdot 14$	5	2.089	6	$2 \cdot 186$	7	$2 \cdot 00$	1
1.814	1	-		1.845	3	- -	
1.780	3	-		1.794	4	-	
1.725	1	1.729	6	-		1.733	4
1-686	1	--		-		-	
1.657	$\frac{1}{2}$	-		-		-	
1-550	$\frac{1}{2}$	-		1.583	$7 \frac{1}{2}$	--	
1.525	5	1.522	10	1.553	$7 \frac{1}{2}$	1.533	7
$1 \cdot 497$	5			-		-	
1-450	1	-		-		-	
$1 \cdot 407$	$\frac{1}{2}$	-		-		-	
1-322	$\frac{1}{2}$	-		-		1.318	4
$1 \cdot 300$	3	$1 \cdot 301$	7	1-326	6	-	
$1 \cdot 268$	3	-		1.273	4	1.268	2
1-238	1	-		-		-	
$1 \cdot 208$	1	-		-		-	
1-159	2	1-187	$\frac{1}{2}$	1-160	2	-	
1.099		-		1.061	$3 \frac{1}{2}$	-	
1.068	2	-		-		--	
1.051	2	1.039	2	-		-	

* Data from G. C. Selfridge, 1936 (loc. cit.). $\quad \dagger$ Line due to talc impurity.

Since the mineral occurs as small flakes with distinct basal cleavage,
${ }^{1}$ G. C. Selfridge, Amer. Min., 1936, vol. 21, p. 463. [M.A. 6-476.]
it was possible to pick out individual flakes, one of which was mounted and used for rotation photographs. A $6-\mathrm{cm}$. single-crystal camera was used with filtered $\mathrm{Cu}-K \alpha$ radiation, $\lambda 1.5374 \AA$. The flake was set up to give a, b, and c rotation photographs. The films produced are marred by the fact that some of the spots are extended into Debye powder lines. On indexing, however, it was found that the $h k 0$ reflections were always spots, while $h k l$ reflections were Debye powder lines. This suggests that there is preferred orientation of the layers.

The mineral was found to have a monoclinic unit cell with a $5 \cdot 29$, $b 9.18, c 7.45 \mathrm{kX} ; \beta 91.4^{\circ}$; this cell leads to a calculated density of $2.52 \mathrm{~g} . / \mathrm{c} . \mathrm{c}$. The density determined by suspension in a bromoformbenzene mixture was 2.56 g ./c.c.

In $h 0 l$ planes h is always even, in $h k l$ planes h plus k is always even, indicating that the monoclinic cell is centred on 001, and that the probable space-group is $\mathrm{C} 2 / \mathrm{m}, \mathrm{Cm}$, or C 2 .

The cell dimensions of chrysotile and antigorite have been given by Aruja ${ }^{1}$ as:

Antigorite . . a $a 43 \cdot 39, b 9 \cdot 238, c 7 \cdot 265 \mathrm{kX} ; \beta 91 \cdot 4^{\circ}$.
Chrysotile . . a $a \cdot 32, b 9 \cdot 2, c 14 \cdot 62 \mathrm{kX} ; \beta 93 \cdot 2^{\circ}$.
The serpentine mineral from Kennack has a smaller unit cell than antigorite, but since the ratio of the a-axes is about one-eighth and the other dimensions are similar it is possible that the two minerals have a similar structure. Using the kaolinite-like sheet structure suggested by Aruja for antigorite as a basis, the intensities of the various reflections were calculated. It was necessary to adjust the z-coordinates of the ions to allow for the difference between the c-axes of antigorite $(7 \cdot 265 \mathrm{kX})$ and serpentine mineral $(7 \cdot 45 \mathrm{kX})$. The calculated intensities for the reflections falling on the equators of the a and b rotation photographs are given in table IV, and it can be seen that there is reasonable agreement.

Conclusions.--The white mineral from Kennack with a formula of $\mathrm{Mg}_{6} \mathrm{Si}_{4} \mathrm{O}_{10}(\mathrm{OH})_{8}$ has a monoclinic unit cell with $a 5 \cdot 29, b 9 \cdot 18$, c $7 \cdot 45 \mathrm{kX}$, $\beta 91 \cdot 4^{\circ}$, probable space-group $C m, C 2$, or $C 2 / m$. It probably has a kaolinite-like sheet structure with all the octahedral positions filled with magnesium ions and so is the magnesium analogue of kaolinite. It is probably a variety of antigorite with very little iron substitution and thus has optical properties (uniaxial, negative $\epsilon 1.545, \omega 1.555, \omega-\epsilon 0.01$) different from those usually associated with antigorite.

[^1]Table IV.

Equator of a rotation photograph.					Equator of b rotation photograph.				
$4 \sin ^{2} \theta$		F^{2}	Int.	$4 \sin ^{2} \theta$	$4 \sin ^{2} \theta$		F^{2}	Int.	$4 \sin ^{2} \theta$
(calc.)	hhl.	(calc.)	(obs.)	(obs.)	(cale.)	hhl.	(calc.)	(obs.)	(obs.)
$0 \cdot 205$	001	165.0	10	$0 \cdot 205$	$0 \cdot 205$	001	165	10	$0 \cdot 205$
$0 \cdot 340$	020	$17 \cdot 0$	4	$0 \cdot 34$	$0 \cdot 110$	002	48	8	$0 \cdot 42$
$0 \cdot 394$	021	$5 \cdot 4)$			$0 \cdot 580$	200	28	3	$0 \cdot 58$
$0 \cdot 410$	002	$48 \quad 5$	9	$0 \cdot 405$		[003	187		
$0 \cdot 533$	022	7	-	-	$0 \cdot 615$	$\{201$.	$75\}$	10	0.615
0.615	003	18	3	$0 \cdot 615$		(201	39		
$0 \cdot 680$	040	1)	1	0.680	$0 \cdot 705$	202	8)	3	0.71
0.704	023	35	1	$0 \cdot 680$	$0 \cdot 715$	$20 \overline{2}$	$2\}$	3	$0 \cdot 7$
0.710	041	3	--	-	0.82	004	$2)$	1	$0 \cdot 84$
0.795	042	0	\cdots	-	0.83	203	1)	1	$0 \cdot 84$
0.820	004	2	1	0.85	$0 \cdot 86$	$20 \overline{3}$	3	2	$0 \cdot 86$
0.914	024	0	-	-	$1 \cdot 019$	204	$6)$		
0.918	043	2	-	-	$1 \cdot 025$	005	$9\}$	3	$1 \cdot 025$
$1 \cdot 020$	060	$33)$			$1 \cdot 040$	$20 \overline{4}$	7		
$1 \cdot 025$	005	$9\}$	9	$1 \cdot 01$	$1 \cdot 17$	205	$1)$	\bigcirc	$1 \cdot 16$
1.040	061	6.			$1 \cdot 18$	400	35	2	$1 \cdot 16$
1.070	025	0	-	-	$1 \cdot 19$	5205	$3)$	3	$1 \cdot 19$
$1 \cdot 090$	044	1	$\frac{1}{2}$	1.06	$1 \cdot 19$	$\{401$	$5\}$	3	1.19
$1 \cdot 100$	062	$1)$			$1 \cdot 20$	$40 \overline{1}$	9	2	$1 \cdot 20$
$1 \cdot 190$	063	3)	1	$1 \cdot 10$	1.93	$\{006$	3	$\frac{1}{2}$	$1 \cdot 23$
1.230	006	3	$\frac{1}{2}$	$1 \cdot 27$	1.23	\{ 402	0	-	-
$1 \cdot 233$	045	0	--	---	$1 \cdot 25$	402	3	$\frac{1}{2}$	1.255
1.27	026	0	-	--	$1 \cdot 32$	403	3	$\frac{1}{2}$	$1 \cdot 32$
$1 \cdot 325$	064	0	-	-	1.34	$40 \overline{3}$	1	-	-
$1 \cdot 360$	080	1	-	-	$1 \cdot 35$	206	0	-	-
$1 \cdot 400$	046	0	-	-	$1 \cdot 37$	$20 \overline{6}$	1	--	-
1.435	007	1	-	--	1.43	007	2	$\frac{1}{2}$	1.43
$1 \cdot 470$	027	0	--	--	$1 \cdot 53$	207	1	-	-
$1 \cdot 58$	047	0	--	-	$1 \cdot 56$	$20 \overline{7}$	0	-	-
1.64	008	0	-	--	$1 \cdot 64$	008	1	-	-
$1 \cdot 67$	028	0	-	--	1.73	208	0	-	-
					$1 \cdot 74$	600	5	2	1.75
						[208	0	-	-
					$1 \cdot 75$	$\{601$	$2)$		
						$60 \overline{1}$	$1)$	1	1.76
					1.78	602	1	$\frac{1}{2}$	1.79
					1.80	$60 \overline{2}$	0	--	-
					1.84	603	2	1	1.83
					$1 \cdot 845$	009	2	-	-
					1.86	603	3	$\underline{2}$	1.86

[^0]: ${ }^{1}$ S. Caillère and S. Hénin, Ann. Agronom. Paris, 1947, n. ser., vol. 17, p. 23. [M.A. 11-175.]
 ${ }^{2}$ This material is white or stained red, soft (H. 2) and soapy to the touch. It forms a granular mass of micro-crystals with refractive index about 1.555.

 L 12

[^1]: ${ }^{1}$ E. Aruja, Ph.D. thesis, Cambridge, 1943 ; Min. Mag., 1945, vol. 27, p. 65.

