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On the correlation of physical properties with chemical
composition 1 multivariate systems

By Max II. Hey, M.A,, D.Sc.

Department of Mineralogy, British Museum (Natural History).

[Read 27 January 1955.]

Summary.—A systematic and time-saving procedure for the correlation of optical
or other physical properties with chemical composition is outlined, and is applicable
even where the composition is complex and involves several variables. The proce-
dure is applied to anthophyllite, for which the following partial regression equations
are derived:

y - 127249 0-01308i-: 0-0140(Ti - Fe” : Fe” - Mn) ; 0-0012,
B - 17275 —0-01428i . 0-024(Ti - Fe”)5 0-0110(Fe” -~ Mn) --0-0015,
a = 1:6951 —(-0117Si - 0-040(T1 - Fe”) :-0-0133(Fe” . Mn) . 0-0025,

b(A) = 1643 1 0-288i - 0-13 Mg - 0-40(Ca-=-Na | K) ! 0-04.

The @ and ¢ cell-dimensions appear to be constant, within the experimental error of
the available data.

Y far the most popular as well as the simplest means of deriving

and displaying the correlation of the physical properties of a
mineral with its chemical composition is the graphical method, either
in the form of a linear graph or a triangular or square contoured correla-
tion diagram; but these methods are necessarily limited to minerals
whose variations in composition can be expressed in terms of one or two
parameters,! and only the simple linear graph can indicate efficiently
the probable accuracy of the correlation.

The method of least squares is applicable to both linear and non-linear
correlations with any number of independent parameters, and 1s widely
used in many branches of the physical and biological sciences, but has
rarely been applied in mineralogy. Probably one reason for this neglect
is the lack of any readily available description of the method as applied
to multivariate systems, for such well-known textbooks as J. W.
Mellor’s ‘Higher Mathematies for Students of Chemistry and Physics’
(London, 1931) and R. A. Fisher’s *Statistical Methods for Research

1 The triangular diagram involves three variables, the square one four, but in
each case only two are independent.
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Workers’ (11th edn., Edinburgh, 1950) only devote a few short para-
graphs to it, and many only deal with its application to simple correla-
tions with one independent parameter (y = az+b), for which the familiar
graphical method is usually adequate. Another reason for this neglect
is the assumption that the procedure, as applied to a multivariate
system, is necessarily very time-consuming; the evaluation of a deter-
minant of high order is at best a slow process and needs careful checks,
and at first glance a set of regression equations in # independent variables
would appear to involve the evaluation of n+1 determinants of nth
order for each dependent variable, plus ancillary calculations: the
procedure outlined below calls for little more labour than is involved in
the calculation of 2 to 4 determinants of the nth order, whatever the
number of variables.

In many minerals the principal physical properties, including unit-
cell dimengions, density, refractive indices, and birefringences, appear to
be reasonably well reproduced by linear partial regression equations in
which the independent parameters define the chemical composition;
they may be weight percentages, empirical unit-cell contents, or atomic
ratios (the last will usually be most convenient). The possibility of a
non-linear regression must always be borne in mind ; perhaps the simplest
check is, after deriving the best linear correlation, to plot the residuals
(that is, the differences between the observed values of the dependent
variable and the value calculated from the regression equation) against
each of the compositional parameters in turn. The points should lie
evenly about a straight line parallel to the composition axis; if they
appear to lie evenly about a straight line not parallel to the composition
axis, the regression coeflicient for that constituent has been incorrectly
estimated, while if they suggest a curve, the correlation is probably non-
linear in that constituent.!

Before proceeding to discuss methods for deriving regression equations,
certain inherent limitations to their use should, perhaps, be emphasized.
A regression equation can only be utilized for one particular purpose—
an equation or set of equations derived to predict the refractive index
or indices of a mineral, given the chemical composition, cannot properly
be used to predict the composition, given the refractive indices. The
reason for this restriction is clearly explained and illustrated by M. J.
Moroney.? If it is desired to predict the chemical composition, given an

1 M. H. Hey, Min. Mag., 1954, vol. 30, pp. 281-4.
2 M. J. Moroney, Facts from Figures, 2nd edn., Harmondsworth, 1953, pp.
2934,
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adequate number of physical data, a suitable set of regression equations
must be calculated for that purpose.!

The dervvation of o portial regression equation; selection of data

The first steps in the investigation of any correlation are to decide on
the relevant variables and to review all the available data. As a rule,
the independent variables will be parameters defining the chemical com-
position, and the only question will be how many such parameters are
really essential to the correlation: every additional variable increases
the order of the determinants involved and adds greatly to the labour of
calculation ; on the other hand, whereas it is a relatively simple matter
to discard a superfluous variable, the whole investigation has to
be repeated if it should be found later that some neglected variable is
really essential to the correlation (e.g. if some supposedly unimportant
constituent such as fluorine proves to have an important effect on a
physical constant such as the refractive index).

Having decided on the relevant variables and collected all the avail-
able data, we have to decide whether all the data should or can be used,
and whether all should be assigned equal weight. Generally speaking,
1t 1s desirable to make the fullest nuse of all available data, but it will be
obvious that if part of the data is more accurate than the rest, it should
be given greater weight.? Occasionally it may happen that a part of the
data is much more accurate than the rest; then it may be desirable to
derive the regression equation from the more accurate data alone, and
check the result by comparison of predictions made using this equation
with the remaining, less accurate data. Similarly, a few sebs of data of
doubtful accuracy are best rejected for the derivation of the regression
equation.

If several physical quantities, such as refractive indices, density,

! This has been done for the mineral here taken as an example, anthophyllite,
but owing to the restricted range of variation of the birefringences the results will
always be rather inaccurate. The equations derived for the composition, in atoms

per 24(0,0H,F), and assuming an accuracy of +0-001 in the refractive indices
and 4003 in the density, are:
Si = 165 (y—p)—102 (y —a) — 30y —3-3D+60-13 1 0-5,
Al = 346 (y—B)+229 (y —a)-+29y+10-8D —81-70 + 1-0,
Mg = —33 (y—8)+37 (y—a)—61y+0-2 D4103-87+0-5,
Fe” = 103 (y—B)— 10 (y—a)—50y+18-3 D-+24-59 4 0-4.
These equations give a fairly satisfactory representation of the ten superior sets of
data by J. C. Rabbitt (see below).
2 The procedure for giving greater or less weight to a part of the data is discussed
below, p. 91.
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unit-cell dimensions, &e., are to be correlated with the same group of
independent variables, such as parameters defining the composition, it
will almost always be advantageous to reject any sets of observations in
which only some of the physical quantities were determined (provided
there are not too many such sets). The reason for this is that if the
independent variables are the same for all the sets of observations
utilized, a single covariance matrix can be calculated and applied to
derive the regression equations for all the physical quantities; and, as
will be seen below, the calculation of the covariance matrix is the most
laborious stage in the calculations. But calculated values for any rejected
data should always be derived and compared with the observations, as a
check.

It is perhaps preferable, in discussing the derivation of a set of partial
regression equations, to consider a concrete example, and the correlation
of the refractive indices and unit-cell dimensions of anthophyllite with
1ts composition is a useful one, because it is not too simple, but illustrates
well many of the possible complications. The available optical data con-
sist of some thirty-eight sets of data obtained on analysed specimens,?
but in some cases only one refractive index or only the optic axial angle
was determined ; moreover, ten sets of data, all determined by one
worker and therefore more strictly comparable, are of decidedly superior
accuracy. The X-ray data consist of ten sets of cell-dimensions, on a
group of analysed specimens? overlapping the group with optical data
of superior accuracy. The variations in the ¢ and ¢ dimensions are within
the accuracy of the measurements, but the b dimension shows significant
variation.

The first step was to select suitable parameters to define the composi-
tion. Anthophyllite may have at least fourteen composition variables:
Si, Ti, Al, Fe”, Fe”, Mn, Mg, Ca, Na, K, F', OH’, 0", and interstitial
H,0 (as in the Glen Urquhart gedrite); but only thirteen of these will
be independent, on account of the valency balance.

The composition would be best expressed in empirical unit-cell con-
tents, but the regression equations could then only be used where the
necessary density and cell-dimensions were available. If empirical unit-

1 Analyses 1, 2, 3, 4, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 20, 22, 24, 25, 26, 29, 30,
33, 34, 35, 38, 39, 40, 41, 43, 44, 45, 72, 79a, and 85 of J. C. Rabbitt (Amer. Min.,
1948, vol. 33, p. 263 [M.A. 10-416]); R. Pirani, Atti (Rend.) Accad. Naz. Lincei,
cl. fis. mat. nat., 1952, ser. 8, vol. 13, sem. 2, p. 83 [M.A. 12-30], and p. 170 [M.A. 12—
140], and 1953, vol. 15, sem. 2, p. 422 [M.A. 12-374]; G. H. Francis, Min. Mag.,
1955, vol. 30, p. 709.

% J. C. Rabbitt’s nos. 1, 8, 9, 14, 17, 20, 26, 29, 30, and 43.
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cell contents are not used, some assumption must be made, and it is
convenient to assume that > (0,0H,F) = 96, neglecting the possibility
of interstitial water ; in fact, none of the ten selected analyses shows any
interstitial H,0, so this parameter is not required, though, as will be
seen below, interstitial H,0 appears to have a very marked effect on the
refractive indices. The number of parameters has thus been reduced to
eleven. Owing to the small number of analyses in which it was sought,
B’ was necessarily neglected ; this is unfortunate in view of the large
effect it usually has on the refractive indices. Variations in OH' were
also neglected in view of the uncertainties relating to the water deter-
minations. Further, in view of the small amounts of Ti and Fe” present,
and their similar optical effects, (Ti+Fe”) was taken as one variable
for the optical data ; similarly, (Ca+Na+K) was taken as one variable,
and Mn was included with Fe”. The reduced number of independent
parameters is six: Si, Al, (Ti+Fe”), (Fe”4+Mn), Mg, and (Ca--Na+K).
Finally, it has been assumed that the replacements Ti = Fe, Ca = (Na, K},
and O = (OH,F) can be set against one another and balanced out with-
in the probable accuracy of the chemical analyses; with this restriction,
the requirement of valency balance reduces the number of independent
parameters to five. It is convenient to discard Al as an independent
parameter, leaving for the correlation with the optical data: Si, (T1+Fe”),
(Fe”+Mn), Mg, and (Ca+Na-K), all expressed in atoms per 24(0,0H,F) ;
the unit of 24(0,0H,F) was chosen to facilitate comparison with the
clinoamphiboles and the pyroxenes.

For the correlation with the unit-cell dimensions it may reasonably
be assumed that in view of their similar ionic radii the small amounts
of Mn may be included with Fe”, and the Ti and Fe” with Al, while Ca,
Na, and K may be taken together. And in view of the uncertainty of
some of the water contents, and the similarity in the radii of ¥, OH’,
and O”, the variations in HyO and F’ have been disregarded. The number
of variables is thus reduced to five, only four of which are independent;
these are the same as for the correlation with the refractive indices,
excluding Ti-+Fe”.

The next step is to decide whether to use the whole or a selected
part of the available optical data (all the X-ray data are useful and of
about equal weight). The use of incomplete sets of data would have the
disadvantage that a complete recalculation of the covariance matrix
(see below, p. 78) would be needed in respect of that optical constant for
which additional data was available, and the incomplete data were not
numerous, nor did they extend the composition field notably ; they were



$6:LT

¥6-L1
G081
¥6-L1
8081
¥1-81
6641
0L-LT
¥8-LI
98-LI
96-LT

(¥

M. H. HEY ON

L6€9-1

96191
29191
08191
63€9°1
$599-1
[9g9-1]
0729 T
9L%9T
0399°T
£9G9-1
9959-T
‘K

LL¥9°1

[39-1]
10€9-1
08%9-1
0L391
78891
06%9-1

[L999-1]
G6C9-T
SPCO-T
£099-1
08991
0L99-1

l

‘eF PUR 0€ 62 ‘9% ‘02 ‘LT P16 ‘8 ‘I "SOU ‘UOe[a1100 ARI-Y AU} I0] PIsn s19s U9y

LLGO T

$0%9-1
01%9-1
0989-T
LTS9-T
$099-1
[zLo-1]
12991
6199-1
$699-T
81291
18L9-1
A

610
91-0

1€-0
£0-0
91-0
L€-0
80-0
¥0-0
00-0
6¢-0
20-0
gl-0
80-0
1¥-0
SHEN -+

7%
24

¥0-9
16-¢
19:¢
G6-9
£8¥
60-¥
L9-3
L9-¢
¥e-v
€6-€
8L-¢
L§-€
.mz

91
841

320
%1
L31
00-1
81
892
02
11-¢
L1
803
£8'1
€23

WU, 00

*UOIJBWICHUI J0YJ0 PURB $a13I[e00] 10J Jaded
STy} 03 9PEW o PIOYs 0usIeyal {[9TF—0T V' IN] €92 'd ‘€€ 'ToA ‘61 “UIY "ITowry ‘prqqes ) ' Aq poudisse as0y) oxe sIOqUINU aYT, «

61-0
¥1-0

€0-0
00-0
00-0
00-0
qe1-0
61-0
690
850
LT0
310
€0
¢1-0
wPH L

81-L
¥5-L

@
0

W
N

197
Ge

*ON

oy yo sueour oy soAI3 Ty oyM ‘GE PUB ‘0g ‘6% ‘0% ‘GG ‘LI PI ‘6 ‘8 ‘I 'SOU ‘SUOIL[AII00 reonydo oYy3 J0J pasn eyep Jo $308
U0} 93 JO SUBIWE oY) §OAIS [ ‘SUBLUL OY) UL POPNIOUL 40U oIk s90xoeiq olenbs wr eyep Teondo oweyur oy, (I‘HO‘ONE
30d swoye ur ueard oxe vyep reorwey) oirAydotjue Jo suemroods pesdeue doy erep [eordo pejoe[ss pue AvL-X [ IV,

74



CORRELATION OF PHYSICAL PROPERTIES 15

therefore not used for the calculation of the partial regression equations.
An attempt was made to derive equations using all the remaining data,
and assigning a weight of 2 to J. C. Rabbitt’s data in view of their
superior accuracy ; but the equations so deduced gave residuals! for the
superior data that were unexpectedly high and distinctly biased, sug-
gesting that not enough weight had been given to the superior data.

It would indeed appear that the difference between the accuracy and
coherence of J. C. Rabbitt’s optical data and that of the rest cannot
adequately be met by a weighting factor, and as Rabbitt’s data appear
to cover the composition field reasonably well, a fresh start was made,
using them alone (analyses 1, 8, 9, 14, 17, 22, 26, 29, 30, and 35); their
number is uncomfortably small, and it is probable that the equations
now deduced will require considerable amendment and extension when
more data are available.

Preliminary preparation of the data; formation of the matrix equations.

Having ascertained the relevant variables and selected the data, the
next step is to reduce the data to a form suitable for computation. First,
the mean of each physical quantity and compositional parameter over
all the sets of observations is calculated ; this is done for our example in

TasLE [la. Selected optical data for analysed specimens of anthophyllite, ex-
pressed as differences from the means () of table I. § = 8i—8i, T' - Ti: Fe”—

Ti{ Fe”, F -Fe” 1 Mn e’ Mn, M Mg—Mg, € =Ca+Na 1 K-CajNatK,
I'=y—% B B—PB, A «- & where the bar indicates a mean.

No.  Sx10% Tx>10% Fy 102 M x10% Ox10% Tx104 Bx10% Ax10%

1 - 104 1 445 =117 25 204 193 169

8 —74 21 5 <76 —8 141 153 156

9 —64 -2 30 —61 - 4 118 126 123
14 —42 3 —17 —20 - 14 42 68 79
17 —-23 14 33 —87 13 94 118 143
22 53 5 70 —45 —12 28 13 56
26 59 1 7 29 —8 — 60 —93 —68
29 61 —14 --78 141 21 —227 —-207 217
30 60 —14 -3l 97 0 -167  --197 =235
35 72 —14 —56 137 -13 -173 176 --209

table I; it will usually be suflicient if the several means are taken to the
same number of decimal places as the quantities being averaged. Next,
all the variables are expressed in the form of differences from their
respective means, as in tables ITa and IIs.

! That is, differences between the observed optical data and the values cal-
culated from the regression equation.
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Now in the general case we may have N sets of observations, each set
referring to m specified physical properties (X, Y, Z,....) which are
dependent variables and each of which is to be correlated with » indepen-
dent variables such as the parameters of composition (4, B, C,...; or
in practice 8i0,, Al,04, &c.). And all these variables have been expressed
in the form of differences from their respective means. We can therefore
set up for each physical quantity N equations of the type:!

X; = a, A;+b,B;+c,Ci.+p, Ly (1 = 1,2,..., N),

where a,, b,, ¢,,... are constants, » in number.

Considering in the first place only the N equations for the one physical
quantity X, the squares of the coeflicients 4,, B;, C,,... and their pro-
ducts in pairs 4,B;, 4,C;, 4,D;,..., B,C;, B;D;,..., C;D;,... are evaluated
and tabulated as in table ITB (there will be n(n+1)/2 such terms). The
products X;4;, X;B;, X;C;,... are also calculated (» terms). Correspond-
ing products are now summed over the N equations, and from the sums
a matrix equation in a,, &, ¢,,... can be set up:

1342 S4B 34,0, . SAP ) a, | = || X 4,]]( =123,... N).
2 4B 2B 3B C .. 3 BP by 2 XiB;
24,0 2 BC 207 20 P, €y 2 X0
24P T BPy 3 OP; .. 3P} P 2 X P

A similar equation can be set up for each of the other physical

1 Tt will be noticed that the equations are homogeneous, containing no constant
term. In general, a regression equation correlating one dependent variable with
independent variables will contain a constant term, making n+1 constants, and
in the derivation of the equation determinants of order # -1 will be involved. But
if all the variables are expressed as differences from the mean, the constant term
becomes zero. For if we assume that the constant term is {,, we have X; = {,+
0 +by B+, C;+..; and summing, 3 X; = N, +a, > A;+b, S By46, 2 C;+...
(¢t = 1,2,..., N); but if X;, 4;, &c. are measured from their several means, the
sums ¥ X;, > A;,... are all zero; hence {, = 0. This elimination of the constant
rerm reduces the order of the determinants involved in the derivation of the regres-
sion equations from %1 to », which amply repays the labour of expressing all the
variables as differences from their means. It will also be obvious that if the number
of sets of observations, N, is less than the number of independent variables, n, the
system of N equations has no definite solution; if N = » a solution is possible;
and if, as will normally be the case, N > n, the equations will form an inconsistent
system, from which, however, an optimum solution can be derived by the method
of least squares; in what follows, we assume that N > » and apply the method of
least squares.
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quantities, ¥, Z,...; but provided! that all the physical quantities relate
to the same N sets of values of the independent variables 4, B, C,...,
the left-hand matrix will be the same in all the equations, which can
therefore all be combined into a single equation:

A} TAB YAC, ZAP ||*aya, 0, .| = Z2X A, TV, A4, X ZA,; ...
2 4B, ¥B XBC,.. XBP by b, b, - XXB;, ZY;B, X ZB; ...
Y40, TBO; T LLEOP| |leg ey en- X0 LY,0; ZZ0; ...
T 4P, SBP, Y0P . SP | |p, b, 1. SX,P, TYP, X ZP; ...

In this equation, it will be seen that the left-hand matrix (which is a
symmetrical square matrix of order nxn) contains only the sums of
squares and products of the independent variables; the central matrix
contains all the desired coefficients of the regression equations; and the
dependent variables, the m quantities X, Y, Z,..., only occur in the
right-hand matrix; the central and right-hand matrices are both of
order # X m.

To solve the equation (that is, to evaluate the central matrix of
unknown constants), the most satisfactory procedure is to premultiply
the right-hand matrix by the covariance matrix, which is the reciprocal
of the left-hand matrix and, like it, is a symmetrical square matrix
of order nxn. To evaluate the covariance matrix, we must solve the
equation:

Z A:‘ E AziBi 2 Ai(ji Z Aipi o/l &1 £1a €3 --- Elp = 100 0
S A4B; ¥ B X By ... X BP; £y ban fay oo Eap 010 0
2 Aici Z BKCL' E C% E OiPi ¢ £32 £33 e fsp 001 0
| S a7 B 2P ... TP Epi Epe Eps - Eup 000 ... 1

The solution of this equation is &; = D;;/D,, where &;; is the element
appearing in the sth row and jth column of the covariance matrix, D,
is the determinant of the left-hand matrix (the matrix of sum of squares
and products of the independent variables), and D;; is the determinant
obtained by replacing the ith column of D, by the jth column of the
right-hand unit matrix.

1 This proviso will usually have been met during the preliminary selection and
preparation of the data. If for any reason a different group of independent variables
must be used for any particular physical quantity, the whole procedure, including
the preparatory expression of the data as differences from their means, will have
to be carried out separately for that physical quantity. This is exemplified in the
case of anthophyllite by the data for the unit-cell dimension, b (tables T and ITB;
compare table IIa).
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A systematic procedure for the evaluation of the covariance matrix
will be considered below ; for the moment, we will assume that it has

been evaluated. Then we can write:

Gy Gy Q... H =il by b b flp RN I&:l-L 2y 3 ZzAz
ba‘- bu bz 521 522 523 "p l Z& Z Yvil_ii EZB
Ce Cy G- £y bae €3 . ” Z ‘;1 ' > Y0 Z 2,0y
” | | I, (
Py pz[ Pz - “ 'fzzl §7)2 fz):l f;m l ‘X P z Yi”i 41,1) !]

Multiplying out, any element of the left-hand matrix of regression
coeflicients, say that in the i¢th row and jth column, is obtained by
multiplying the several elements of the corresponding column (the sth)
of the right-hand inatrix by the elements of the corresponding row
(the ith) of the covariance matrix and adding the products. Thus in the
second row and third colunn:

b=én3X %4,

o X2y Bii £3. 2 2,0+ 265, 2 4P,

Finally, we arrive at the desired regression equations:

Xi — Aia.z' "Bbbx"‘:‘Cz(‘Ll‘szPva;u

.i}; iii(ly"!'B bl/ ;C'L('U+—"P1 )Vi(;u;
&c., or In matrix form:
Xl o be o o p,u Al ] & |
i YL- la, b, <, . ”| | B; . L d, h
Z; | e, b, ¢ : Ci d;
L. ....‘i‘n.n! |
e ------uu-|ll~“

It will be noticed that X;, ¥,, &e., are used for the estimated values
of the dependent variables, derived from the regression equations, and
that each equation includes a standard deviation term, &,, é,, &c. The
standard deviation terms may be derived in two ways, and it may be
thonght desirable to use both as a check, though exact agreement will
not normaily be obtained on account of the approximations used in the
course of the calculations. One procedure is to compare the observed
and estimated values of the dependent variables, forming the residuals
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X;— X, V,—Y;, &ec.; then 62 = 3 (X;,—X,)?/N, &c. The other pro-
cedure 1s to use the relation

F=3X—a,> X, 4;—b,3 X;B—¢, 3 X;C;—...—p, S X, P,.

For our example of anthophyllite, it would take too much space to
follow through the derivation of the regression equations for all the
dependent variables in full detail, but the first stage of the procedure
for the cell-side & is illustrated in table IIB; the sums of squares and
products in this table, and the corresponding sums for table IIa (the
derivation of which is not shown) lead to the two matrix equations:

3-6187 —2-2786  4-4288 —0-0125 |||l 5, || = || 0-3622 ||, and

—2-2786 32810 —5-3956 —0-2385 fo 0-0349

44988 —5-3956  11-6463  0.5298 g 0-1421

—0-0125 —0-2385  0-5208  0-2047 s 0-0109

%102

41476 —0-4356 —1-5162 4-8148 —0-2226 || ®|sp sy sa ||=] —&1507 —8-6495 —8-6471
—0:4356  0-1265 0-3478 —0-8315 —0:0175|| |ltp g 1, 1-2389  1-3102  1-4811
—15162 0-3478 20858 —3-6770 —0-0314|| ||/p f fa 5-3684 52056  5-9468
4-8148 —0-8315 —3-6770 82080 —0-1436|| ||'mp my mal| || —12:5707 —12-9211 —13-8756
—0-2226 —0-0175 — 0-0314 —0-1436  0-1888 r cg A 01760 02208  0-1167

In both these equations the coefficients s,, s, g, s4 are the coeflicients
of S in the desired regression equations for X, I', B, and A respectively
(these symbols are defined in tables I and II), while ¢, £, m, and ¢ are
the corresponding coefficients of 7, ¥, M, and C; and the power of
10 written over the first term of a matrix is to be understood, here and
later, as multiplying every term of the matrix.

The two covariance matrices, which are the reciprocals of the left-
hand matrices of these two equations, are next found by the procedure
ouflined below (p. 93):

£ €y Em Ese || = 0-6759 0-1898 —0-1875 0-7248 || (for X) and
&s &iF Efm Efe 0-1898 1-2858 0-5423 0-1558

Ems Emf Emm Eme —0-1875 0-5423 0-4276  —0-4945

bos Eof Eom Eeo 0-7248 0-1556 —0-4945 6-3390

Ess Est Eof Esm Ese ||= 6891 —18-836 —12.072 —11-434¢ —4-325 || (for I, B, and A).
Eis b fif Eem Ere —18.836  82.349  36.260  35-962 18-308

&s S & Eim £ —12:072  36:260  24.058  21-699 9634

Ems Emt Emf Emm Eme —11-434 85962  21-699  20-348  8-939

Ees € b5 Eom oo —4-325  18-808 9-634 8939 10-342

Applying the covariance matrix for X:

s, || = 0-6759 0-1898 —0-1875 0-7248 || 0-3622
fe 0-1898 1-2858 0-5423 0-1558 0-0349
my, —0-1875 0-5423 0-4276 —0-4945 —0-1421
c, 0-7248 0-1558 —0-4945 6:3390 0-0109
=]| 06759 0-3622--0-1898 X 0-0349+0-1875 X 0-1421+0-7248 X 0-0109|}=|] 0-286}|.
0-1898 X 0-36224-1-2858 X 0-0349 — 0-5423 X 0-1421+-0-1558 X 0-0109, 0-038
—0-1875 X 0-3622--0-5423 x 0-0349 — 0-4276 X 0-1421—0-4945 % 0-0109 —0-115

0-7248 % 0-36224-0-1558 X 0-0349+0-4945 X 0-1421 4 6-3390 X 0-0109! 0-407
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Hence we derive the regression equation for X:
X = 0286 §4-0-038 F— 0-115 M 4-0407 C,
with a variance
o = (X X2—s, X XS—f, 3 XF—m, 3T XM —c, 3 XC)/N
= (0-1425—0-286 x 0-3622 —0-038 x 0-0349 —0-115 x 0-1421 —

—0-407 x 0-0109)/10
= 0-0017,

and standard deviation 6, = 0-04. Lastly, we replace the differences
from the mean, S, F, M, C, and X, by the measured quantities Si,
Fe”+Mn, Mg, Ca+Na+XK, and b, arriving at the final form of our
regression equation for b:
6—17-95 = 0-286 (Si—7-18)+0-038 (Fe”+Mn—1-64)—
—0-165 (Mg—4-41)+0-407 (Ca+Na+K—0-19)4-0-04,
b = 16:48--0-286 Si+0-038 (Fe”+Mn)—0-165 Mg+
+0-407 (Ca+Na+K)40-04.
Similarly, we arrive at regression equations for y, 8, and «:
¥ = 1-7273—0-0134 Si+0-0145 (Ti+Fe”)+0-0140 (Fe"+Mn)+
+0-0002 Mg—0-0030 (Ca + Na+ K)+0-0009,
B = 1-7299—0-0143 Si+0-0232 (Ti+Fe”)+0-0108 (Fe”+Mn)—
—0-0002 Mg—0-0015 (Ca—+Na-+K)40-0014,
& = 1-7009—0-0113 Si-+40-0368 (Ti-+Fe”)+0-0120 (Fe”-Mn)—
—0-0012 Mg—0-0028 (Ca+Na+K)+£0-0021.
This completes the derivation of the desired regression equations. But
we notice that they contain several very small coefficients, and we may
reasonably doubt whether these differ significantly from zero. It is not
difficult to test whether this is so, to test whether two coefficients that

are nearly equal differ significantly from one another, and to decide how
many significant figures are justifiable in each coefficient.

The standard deviations of the regression coefficients; tests of the significance
of the regression coefficients.

An estimate of the standard deviations of the regression coeflicients
can very readily be made by using the covariance matrix. For if the
estimated standard deviation of the dependent variable, X, is 6,, and

B 5381 e
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the estimated standard deviations of the regression coeflicients «,, &,,
Cysne AT€ Gygy G,,, &e., then &) , = o2&y N/(N—n—1), where N is the
number of observed values of X and » the number of independent
variables a, b, &c.; or in general for the Ath in the series 6, ,, G, 4.
we have 62, = 62 kaN/(N n—1).

For the coefﬁments of the regression equatlon derived above for the
b cell-dimension of anthophyllite, we have:

%s:= 62€, N(N—n—1) = 0-0017 x 0-6759 X 10/5 — 0-0023;
ob = 0-0017 x 12858 x 10/5 = 0-0044 ;
a,, = 00017 x 0-4276 x 10/5 = 0-0014;
62, = 0-0017 x 6-3390 x 10/5 — 0-0215

(note that the second factor in each is an element of the principal
diagonal of the covariance matrix). Hence we have

Gy = 0048, &, ;= 0-066, &,,, = 0037, &;, = 0-147,
and
s, = 0-286+0-048, f, = 0-038+£0-066, m, = —0-11540-037,
¢, = 0-407+£0-147.

It is obvious that the coeflicient f,, with a standard deviation much
greater than the coefficient itself, is not significantly different from zero;
but some quantitative test for the significance of the coefficients is
desirable, and is, in fact, readily available. Most collections of tabulated
statistical functions include a table of ‘Student’s ratio’, ¢. This is the
ratio of a quantity to its standard deviation, and the tabulated figures
are the probabilities, for given values of Student’s ratio and given
numbers of degrees of freedom, that the quantity under consideration
does not differ significantly from zero. It is not necessary for our pur-
pose to consider the exact meaning of the term ‘degrees of freedom’ in
statistical theory ; it will suffice to say that in this connexion the number
of degrees of freedom is N—n—1: N and n are defined above.! Applying
this procedure to our example, the values of Student’s ratio are

by = 8/6y, = 60, t,,= 0BT, t,, =31, t, —28,

and there are 5 degrees of freedom; from the tables the corresponding

1 In this connexion, it must not be forgotten that » is the number of independent
variables remaining, not necessarily the original number the investigation started
with ; if any terms have been rejected from the regression equation as not significantly
different from zero, » will be reduced accordingly.
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probabilities that the several coefficients are not significantly different
from zero are I, < 001, F, ; 06, £, , 003, P, ,0-04. The degrec of
probability that a coefficient is significantly different from zero is of
course a matter for the judgement of the individual worker, but this
simple technique does provide an objective measure of that probability.
We have accepted a probability of 0-40 or less as justifying the inclusion
of the term in question, and on this basis the term in F may be rejected
from the equation for b as not justified by the data at present available,
while the terms in S, M, and C must be retained.® This does not imply
that b does not vary with Fe”+Mn, but merely that the data at present
available are not adequate to prove any such variation.

When any coefficient of a regression equation has been shown not to
differ significantly from zero, we proceed to eliminate that term and
readjust the remaining coeflicients to give the best representation of the
observations. But before considering the procedure for this readjust-
ment it is desirable to consider the possibility that two coefficients may
not differ significantly from one another, when it would be proper to
replace the two separate terms in two independent variables, say B and
G, by a single term in their sum, B+ G, adjusting all the coefficients
accordingly.

To test whether two coefficients, say b, and g, differ significantly from
one another, we divide their difference by its standard deviation to
obtain the appropriate Student’s ratio ¢, ,_,; then from the tables, with
this value of t and ¥ —n—1 degrees of freedom, we derive the probability
P, , , that the two coefficients do not differ significantly from one
another. The standard deviation &, , , of the difference b—g is given,
in terms of the standard deviation &, of the dependent variable, by the
relation: 67 , , = 62(€yp+Em—26y) N[(N—n—1); the appropriate ele-
ments of the covariance matrix are &y, &,y and &,, because b and g are
second and seventh in the series a, b, c,....

Considering the remaining, adjusted coefficients of the regression
equation for the b cell-dimension of anthophyllite, after elimination of
J» (see p. 84) it is obvious that since all the coefficients have been shown
to differ significantly from zero, the negative coefficient m, — —0-131
must differ significantly from the two positive coefficients s, = 0-280
and ¢, = 0-403. The difference of the two positive coefficients, ¢,— s,

I An alternative test, less rigorously based but guite adequate for most in-
vestigations, is to accept any coefficient as probably significant if it is greater than
its standard deviation. This test has the advantage of not requiring tables of
Student’s ratio.
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is 0-123, and the standard variation of this difference is given by:

&l?, c—s — 6b(§cc+§ss_2fos)N/(N_n_1)
= 0-00181 (0-6479-6-3201 —2 x 0-7018) 10/(10—3—1)
= (0-0168,

whence &, , , = 0-130; then ¢, , — {6—38)/6p s = 0-123/0-130 = 0-95,
and with six degrees of freedom, we find from the tables B, , — 0-38;
this is on the borderline of significance, but we retain the separate terms
because of the chemical contrast between the independent variables
involved, Si and Ca-+Na-+K.

Procedure for the elimination of a non-significant term from the regression

equations.

If it has been established that one of the coefficients, say the kth in
the series @, b, ¢,..., does not differ significantly from zero, it can be
eliminated, and the remaining coefficients adjusted by recalculating a
new covariance matrix of reduced order (n—1); the general term, §;j, of
the new matrix is derived from the corresponding term, ;;, of the old (not
counting the kth row and column of the old matrix) by the relation

gi’j = f@j_fik-gjk/fkk'

The matrix of coefficients is then found by postmultiplying the
reduced covariance matrix by the matrix of sums and products of the
independent variables, excluding the row appropriate to the eliminated
independent variable.

Thus with the equations for the refractive indices of anthophyllite,
we have originally (omitting the terms below the principal diagonal of
the covariance matrix, which may be inserted by symmetry):

x 10-2
Sy SB SA|]=]16-891 —18:836 —12-072 — 11434 —4-325||e|| —8-1507 —8:64956 —8-6471]!
tr B A 82-349 36-260 35962 18-808 1-2389 1-3102 1-4811
fr /B fAo 24-058 21-699 9-634 5-3684 5-2956 59468
™ML mMB MA| 20-348 8939 —12:5707 —12-9211 —13-8756
Cr CB CA 10-342 0-1760 0-2208 0-1167

To adjust the coeflicients when we eliminate the terms in M we must
eliminate the fourth row and fourth column of the covariance matrix (the
italicized terms) by the above procedure, and delete the fourth row of
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the other two matrices. For the reduced covariance matrix we may
write:

€l =
STFN
24~058—(21(;gi‘22 9.364_@1_-629(§{_$W
10-342—(28(';’33;5’;2 .‘

The pattern in this expression should be readily apparent. After evaluat-
ing it and making a second reduction by the same procedure to eliminate
the terms in ¢, which also prove to be non-significant, we arrive at an
equation for the remaining coefficients:

x 10-2
llsr o5 sall=1[0-3901 1-0443 01103 [|*]| —81507 —8-6495 —8-6471
[t ta ta 17:3789  —2-1372 12389 13102 1-4811
(lfr fo fa 09166 || || 53684 52956  5-9468

—0-0129 —0-0142 —0-0117
0-0180 0-0242 0-0400
0-0143 0-0110 0-0133

When the new regression equations with these coefficients are tested,
it is found that while all the coefficients are significantly different from
zero, t. and f1, (0-0180 and 0-0143) are not significantly different from one
another. We can therefore compound these terms if we wish, and we
now consider how to do so.

Procedure for compounding two terms of a regression equation whose
coefficients do not differ signaficantly from one another.

If it has been established that two of the coeflicients of a regression.
equation, say the kth and the gth of the series a, b, c,..., do not differ
significantly from one another, they can be adjusted to equality, and
the remaining coefficients adjusted, by recalculating a new covariance-
matrix of reduced order (r—1). The new, adjusted column and row,
replacing the kth and the gth of the old matrix, can retain the place of’
either, the other being deleted ; if we retain it in the kth place, the general
term, ¢&;, of the new matrix will be derived from the corresponding
term, &;;, of the old (not counting the gth row and gth column of the
old matrix) by the relation:

&y = Eu—En—Ei)Ein—Eid) /Gt Eag—2Era)s
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except when ¢ or j = k or ¢; the terms (except &) of the new kth row
and kth column are given by:

ir = (Eint&id — €t Eicor— EntEid) Enatl(ErntEaa—260d)>
while the new term & = (§éu—E%)/(Eint-Euq—26k,)- The sum of
products matrix ||> X; 4;]| will also be modified, the term 3’ X; K, being
replaced by > X, K;+> X;0;, and 3 X, Q; omitted.
If we apply this procedure! to the coefficients of the regression equation
for T, two of which (¢r and f1) have been found not to differ significantly,
we shall start from the equation:

X 10-2
sp || =1 0-3901 1-0443 0-1103 ||| —8-1507 |.
- 17-3789 —2-1372 1-2389
fr 0-9166 5:3684

The second and third rows {and columns) of the covariance matrix
are to be compounded. Only one term of the new matrix, &, is derived
by the first of the above formulae: '

£ = 0-3901 —(1-0443 —0-1103)2/(17-3789 +0-9166 - 2 x 2:1372)
= (-3525. '

The symmetrically equal pair of terms, &, and £, are derived by the
second formula:

‘= 1-0443+0-1103 —
—{1-0443 x 17-3789+0-1103 x 0-9166 +2-1372 (1-0443+0-1103)};/

(17-3789+0-9166 +2 x 2-1372)
= 0-2365.

And the last term is derived by the third formula:
&, = (173789 x 0-9166 — 2-13722)/(17-37894-0-9166 2 x 1-1372)

= 0-5026.

We now have: o 10-2
sp — || 0-3525 ©0-2365 |||l —8-1507 giving s = 0:0130,
t+r 0-2365 0-5026 1-2389+ 53684 || (¢+f) = 0-0142.

1 If the covariance matrix is of low order, as in the present case, it may be simpler
to recompute the new matrix from the beginning rather than find it by this process.
Referring back to the original matrix of sums of squares and products (the fifth-
order square matrix on p. 80), the fourth and fifth columns and fourth and fifth rows,
containing M and C, are simply suppressed ; to write the second and third rows
and columns, they are just added together, > A/B;+C) =2 4,B;+>4,C,
except for the four terms where the second and third columns cross the second and
third rows; these four terms > 72, 3 F2, and >, TF (twice) are united by the
relation 3 (T+F) = > T2+ > F*-+2 > FT.
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The regression equations for anthophyllite.

In the foregoing discussion the selected example, anthophyliite, has
been discussed at considerably greater length than will normally be
necessary, in order to illustrate the general techniques. For instance,
it may often be thought undesirable, or at least unnecessary, to unite two
terms of a regression equation whose coefficients are not significantly
different ; it will often be quite obvious that certain coefficients are not
significantly different from zero, without formal calculation of their
standard deviations, Student’s ratio, and the appropriate probabilities;
and when terms are to be deleted or compounded and the coefficients
adjusted, it will often be simpler to start anew from a reduced matrix
of sums and products rather than to reduce the covariance matrix. But
it was felt desirable to set out the procedure for all these operations,
since they will sometimes be necessary.

So far as the selected example, anthophyllite, is concerned, we may
set out our conclusions in four regression equations,! each with its
standard deviation ; and as a kind of appendix we may add the standard
deviations of the several coafficients.?

~ 1-7249—0-0130 8i+0-0140 (Ti+ Fe”+Fe”-+Mn)-£0-0012,
B = 171215—0-0142 Si+0-024 (Ti--Fe”)+00110 (Fe”4-Mn)+0-0015,
o = 1-6951—0-0117 8i+0-040 (Ti+Fe”)+0-0133 (Fe”+Mn)--0-0025,

3

b(A.) = 16-44+0-28 8i—0-13 Mg +0-40 (Ca+Na+K)4-0-04,

é,, = 00007, &, = 00008, &5, =00009, dg, = 0004

ég, = 0-0015, ¢, = 00015, o,, = 0.009, &, ;= 0-0025,

Gy, = 005, Oy = 003, é,, = 014,

Tt should, perhaps, be emphasized that the standard deviations of the
dependent variables (y, B, «, and b) cannot be taken as a true measure
of the accuracy with which the given equations reproduce the true
correlation of the physical data with the chemical composition of antho-
phyllite; they merely measure the accuracy with which the equations
reproduce the selected data from which they are derived. It is therefore
desirable to compare the whole of the available observations with the
calculated values derived from the regression equations.

1 The a and ¢ cell-dimensions appear to be constant, within the experimental

error of the available data.

2 These serve as an indication of the amounts by which the several coefficients
can be varied without gravely upsetting the agreement between observed and cal-
culated values (after appropriate adjustment of the constant term).
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Graphs have been prepared in which the residuals (the differences
between observed and calculated values) are plotted against each of the
five composition parameters, but these do not reveal any evidence of

&C 65 7O 75 80
T = r
«00040F 25 29 1+00040
4 7 35
0 8—9 ’224.&‘_ 0
]
3 15
24
" -30
-00080F .4 100080
0 34
&0 l
. 33 38 a5
- 001601 +-00160
L 39 b
. 0
+ DOISO p +00I60
ki
« 00080 25 Looosn
44
20
. . 4 s w8 .
7 3 e 3 26
L /6 25
43. 30
-¢oogo} ¢ -00080
6
b . )
t 25
+00080| 2 4+00080
¥ 20 s 35 ]
0 c 2,
0 A 8 o 0
9 i By T g 45
FoLe '3 -4 qi
o34
-00080 -00080
-0
39
. 233 22
-1 .5 7 K3 i
v ) -
25 . 2] o0
5 Z T 0w )¢
K
- 4 hid -i0*
B o
20 ) 45 200
&0 &5 70 75 80

Si —=

F1a. 1. Departures of the physical properties of anthophyllite from the values

calculated from the regression equations, plotted against Si atoms per 24(0,0H,F).

The numbers against the points are those used in J. C. Rabbitt’s paper; ¢, », and
E refer to R. Pirani’s data.

non-linear variation ; one set of these graphs is shown in fig. 1. Graphs
of the residuals plotted against the hydroxyl groups per 24(0,0H,F)
and against fluorine have been prepared, and suggest that these variables
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do not affect the optics, but in view of the limited number? of sets of
observations and the doubtful accuracy of the chemical data on (OH)
and F’, conclusions from these graphs must be viewed with great caution ;
on general grounds, we should expect F” to lower the refractive indices
notably.

On comparison of the observed and calculated refractive indices? it
is noticeable that (except among the sets of superior data) there is a
marked tendency for all three refractive indices to be high or low as a
group, relative to the calculated values, rather than for one index to be
high and another low (see analyses 6, 7, 10, 25, 33, 38, and 39). This
result, which is emphasized by the fact that with only five exceptions
(of which three are perhaps doubtful analyses) optic axial angles derived
from the regression equations through the calculated refractive indices
agree unexpectedly well with the observed values,3 strongly supports
the general accuracy of the regression equations, and suggests that several
of the sets of observed refractive indices are subject to a systematic
error. Two sets of data, for analyses 38 and 39, are probably low owing
to the presence of 16 %, and 2:4 9, of adsorbed water respectively;*
assuming the mixture law, this should lower their refractive indices by
0-005 and 0-007 respectively; actually, they give values of o 0-012 and
0-016 low, and of y 0-009 and 0-011 low respectively.

There are two sets of data for which the above regression equations
do not give satisfactory refractive indices: the Glen Urquhart gedrite and
analysis no. 25. The latter is the ‘picroamosite’ of S8erdyuchenko (1936),

1 Where a large number of observations are available, the neglect of a variable
will normally lead to fairly large residuals, which if plotted against the neglected
variable will show a distinct trend. But if the neglected variable tends to follow one
of those taken into account, its effect will be largely or wholly absorbed by the
latter ; and if there are only a few observations, false constants will probably be de-
duced, and the residuals will show only an irregular scatter. It is desirable that
there should be at least ten times as many sets of observations as there are variables
to be taken into account.

2 As all the observed data have been published before, and all the calculated
data may be derived from the regression equations, it seemed unnecessary to print
a table of observed and calculated data, but such a table has been drawn up and
deposited in the library of the Mineral Department of the British Museum (Natural
History), where it may be consulted, together with a full set of graphs of the resi-
duals plotted against the composition parameters, including OH’ and F”.

3 The mean difference, excluding the above five analyses, is only 4°, against an
expected 10° ag calculated from the standard deviations of «, B, and y. If the cited
2V(+) for R. Pirani’s anthophyllite from Alpe de Brez is a misprint or error for
2V(—), there would be good agreement in this case also.

¢ G. H. Francis and M. H. Hey (in the press).
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and has a remarkably high content of Fe,0j; the disagreement suggests
that it may not be an ortho-amphibole, or alternatively that the chemical
analysis is in error. For the Glen Urquhart gedrite, we know that the
regression equations neglect the variation in total oxygen atoms per
unit-cell, which in this material is definitely outside the limits of experi-
mental error; if the observed data for this gedrite are taken, together
with the empirical unit-cell contents, to establish approximate additional
terms for the effect of extra oxygen (H,0) in the regression equations,
we find, approximately:

o = ag—0-023 [3’ (0,0H,F)—24];
B = B,—0-020 [3 (O,0H,F)—24];
¥y = y,—0:016 {3’ (O,0H,F)—24].

Here «g, By, 7o are the values derived from the above incomplete regres-
sion equations (but with the composition in terms of one-quarter the
empirical unit-cell contents), and 3’ (O,0H,F) is expressed for one-
quarter the unit-cell contents. If these relations are even approximately
true, they suggest that any anthophyllite having interstitial oxygen, as
the Glen Urquhart gedrite has, will have strikingly low refractive indices
in relation to its composition and should readily be detected by this
property.

It may be of interest to note, in general terms, what the above regres-
sion equations imply regarding the variations in the cell-dimensions and
optical properties of anthophyllite with composition (excluding possible
variations in 3 (O,0H,F)). The b-axis of pure magnesio-anthophyllite
should, from the regression equation, be 17-77 A.; it is lowered by the
substitution of Al, for MgSi, by 0-15 A. for each MgSi per quarter unit-
cell replaced, and raised by the substitution of Al, for Mg,, by 0-13 A
for each Mg per quarter unit-cell replaced ; substitution of Ca, Na, or K
for Mg appears to increase b markedly.

Turning to the optical properties, replacement of Mg by Fe” leads to
an increase in all three refractive indices, as usual, hardly any change in
y—a, and a moderate increase in y—B, and hence decrease in 2V,,; for
one Fe” replacing Mg per 24(0,0H,F) the increase is 0-014 for y,
0-011 for B, and 0-013 for «. Replacement of MgSi by Al,, in gedrites,
leads to an unexpectedly large effect; Al, replacing MgSi increases o by
0-012, g by 0-014, y by 0-013; y—« and 2V, are increased, but y—f is
decreased. Replacement of Al by Fe” or Ti (the data are insufficient to
distinguish these) increases the refractive indices markedly. Replace-
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ment of Mg by Ca or Na appears to have little effect. Replacement of
3Mg by 2Al also has no noticeable effect.

This work had just been completed when the author received a reprint
of a paper by F. Hori,'! who has applied similar methods to the correla-
tion of the optical properties and chemical composition of the clino-
pyroxenes; in this group several substitutions that only occur to a
minor extent in the anthophyllites go much farther, and it may be of
interest to compare the general results of the two studies, though the
structures are not so closely related that any close correspondence is to
be expected. Hori’s equations indicate that a replacement of Mg by
Fe” will increase the refractive indices markedly; for one atom Fe”
replacing Mg per 24 oxygen, the increases will be « 0-014, 8 and v 0-018,
a little greater than the effects in anthophyllite. Replacement of MgSi
by Al,, again on a comparable basis of 2Al per 24 oxygen, leads to
increases in the refractive indices, namely « 0-017, 8 0-025, y 0-020,
again greater effects than in anthophyllite. Replacement of Mg by Ca,
Hori found, increases all three refractive indices in the clinopyroxenes
by 0-003 to 0-005; it is possible that the effect is about the same in the
anthophyllites, but the data are as yet inadequate to draw definite con-
clusions, and the same applies to most of the other possible replacements.

The use of weighting factors.

It may occasionally happen that there are a few sets of observations
of superior or inferior accuracy, and it is desirable to weight such data
appropriately. This is readily done by the use of a weighting factor, but
in choosing this factor it should be remembered that, for example,
physical data of special accuracy do not merit special weight unless the
accompanying chemical analyses are of comparable quality to the rest
of the analyses.

If it 1s decided to use a weighting factor for certain sets of data, those
sets should be multiplied by their appropriate weighting factors, which
may be fractional for inferior data, before adding them to derive
the weighted means, which will be given by relations of the type
Z =3 Wyxy/S W,. The data are now tabulated in the form of differ-
ences from the weighted means, and a column of weighting factors is
added ; the squares and products are formed as usual, except that each
square or product is multiplied by the appropriate weighting factor

t F. Hori, Sci. Papers Coll. General Education Univ. Tokyo, 1954, vol. 4, no. 1,
p. 71.
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before summation (table III), and the matrix equation is set up, the
covariance matrix calculated, and the calculation of the coefficients
completed as above. There is, however, one further complication ; in the
calculation of the standard deviations of the dependent variables we
have &Y W, =3 W, X2—a, > W, X;4,—b, > W, X;B;—... instead of
N2 =3 X?q,> X;4;,—.... The formula for the standard deviations
of the regression coefficients is not affected, and the number of degrees
of freedom remains N —n—1.

The evaluation of the covariance matrix, a systematic procedure.

In the above discussion, the solution to the equation for the covariance matrix
was shortly stated (p. 78) in the form: ¢;; = D,;;/Dq, where £;;is the element in the
ith row and jth column of the covariance matrix, D, is the determinant of the matrix
of sums of squares and products of the independent variables, and D;; is the deter-
minant derived by replacing the sth column of D, by the jth column of a unitary
square matrix of order n, the number of independent variables. If » = 2 or 3, the
formation and evaluation of these determinants presents no particular difficulties,
but if there are many independent variables this process may become very tedious,
and there are many opportunities for errors unless some systematic procedure is
adopted. The procedure outlined below, based on successive pivotal reduction, has
been found very effective in practice and includes adequate checks against arith-
metical errors. It should be added that, since every step in the reduction of the
determinants involves a subtraction of two numbers of the same order of magnitude,
care must be taken to employ enough significant figures at each stage to ensure
adequate accuracy in the final coefficients. With 2 or 3 significant figures in the
observational data when expressed as differences from the means, 5 or 6 significant
figures in the earlier stages of the reductions, and 4 or 5 in the last stages will not
come amiss.

In the method of successive pivotal reduction for the evaluation of the deter-
minants a determinant of order ¢ is reduced to one of order ¢—1 by the following
relation, which is then applied again to reduce the order to ¢—2, and so on:

la, by ¢ .. | =] By, O3 ... @y « _1,_
@y by €y .. gy By Oy ... Q, ag?
as by ¢z ... g |

[ - e B, O ... Q,

{ag by ¢ - gq . i

where By = a,b,—a5b,, B, = a,¢,—a,e,, and similarly throughout. This method has
the great advantage that the quantities B,, (5, &c., of the ‘denominator determi-
nant’ D, recur in all the derived determinants D;; except the group Dy;. For if we
replace the third column ¢y, ¢,,... of the left-hand determinant above by a new
column s, s,,..., then the determinant on the right will remain unchanged except
for its second column Oy, Cj,..., which will be replaced by a new column S, S,
where 8, = a,5,—a,3;, &c.; and if the kth column of the left-hand determinant is
replaced by sy, $,..., the (k—1)th column of the right-hand determinant will be
replaced by S,, S,.... The same, of course, applies to subsequent steps in the
reductions. On this basis a systematic procedure for the reduction of the equation
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for the covariance matrix is possible, in which D, and a proportion of the co-
variances are evaluated twice, so affording a check on the working.

Taking the covariance matrix for the refractive index data for anthophyllite as
an example, we have:

41476 —0-4356 —1.5162  4.8148 —0-2226 [|e )| & £y &y £om fse || =]|1 0 G 0 O]
—0-4356  0-1265  0-3478 —0-8315 —0-0175 & fu Ly Em G 01000
—1-5162 2:0858 —3-6770 —0-0314 s En & Em e 00100

4-8148 82080 —0-1436 s Emi Ems Emm Eme 00010
—0-2226 01888 || || €05 et Ecr Eom Eeo joooo1]
The first pivotal reduction of Dy, the determinant of the left-hand matrix (the

matrix of sums of squares and products of the independent variables), gives:

Dy = [4-1476 % 0-1265— 4:1476 x 0-3478— —4-1476 X 0-83154 —4-1476 x 0-C176—
- (0-4356)2 —0-4356 x 1-5162 40-4356 X 4-8148 —0-4356 % 0-2226
4-1476 X 2-0858— — 41476 36770+ — 41476 % 0-0314—
—(1-5162)* +1-5162 x 4-8148 —1-5162 % 0-2226
4-1476 x 8-2080— —4-1476 X 0-1436--
— (4-8148)* +4-8148 x 0-2226
4-1476 x 0-1888—
—(0-2226)?
X (4-1476)-2,
To find D;;, we replace the ith column of the unreduced form of D, by the jth

column of the right-hand unitary matrix; except when ¢ = 1, the determinant so
obtained will, after its first pivotal reduction, be identical with the first pivotal
reduction of Dy, except in its (¢—1)th column, which will be derived from the first
column of Dy and the jth column of the unitary matrix by the usual relation
By = ayby—a,b,.

We may therefore write the results of the first pivotal reduction thus:

Dy =| 033492 078208 —1-35140 —0-16955|x (4-1476)°;
078208 6:35220 —7.95052 —0-46774
—1-35140 10-86120  0-47618!
—0-16955 073352
Doy c| 04356 41476 0 0 0 |
15162 0 41476 0 0
—48148 0 0 41476 0
| 0226 0 0 0 41476

where the expression on the right is taken to indicate that Dy;),; is derived by re-
placing the 7th column of the left-hand expression for Dy by the jth column of the
right-hand matrix, each column of which is derived from the first column of D, and
a column of the unitary matrix. Since ¢ is necessarily between 1 and 5 inclusive
and the left-hand expression for D, has only four columns, ¢+1 must lie between
2 and 5 inclusive, so that the expression on the right cannot define D;; when ¢ = 1.

‘We make further pivotal reductions in exactly the same manner, with the right-
hand expression for D(;, ) ; taking the place of the unitary matrix and combining
with the first column of the reduced expression for D, to give the new expression
for D49 ;:

Dy =| 151586 —1-60592 —0-02406]x (4-1476)5 X (0-33492)2;
—1-60592 181139 —0-06964
—0-02406 0-21693
Djpa); cc

0-16714 —3-24375 1-38913 0 0
—1-02392 5-60508 0 1-38913 0
0-14841 070322 0 0 1-38913 |
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Dy | 016684 - -0-14420 (414767 X (0-33492) = (1'51586);
| —0-14420  0-32826

Dig o, cli- 128371 328732 2.33083 210573 o i

Il 022809 098793 003342 0 2-10573“

Finally, we evaluate
D, - 0-033970/(4-1476) x (0-33492)? X 1-51586 - - 2-8000 x 1073,
while Dy; and Dy; (j:- 1, 2, 3, 4, 5) are obtained by replacing the first and
second columns respectively of the second-order determinant by the columns of the
associated matrix of order 2 x 5.
X 102
Dy gz = I"i;:’ i —3-8837 122155 7-3711  6-9122  3-0365
5 || —14691 63886 3-2727 30365  3-5131
5

1 2 3 4 5 = .
And as §;; = D;;/D,, we have:
& v i 11434 35962 21609 20348 8.939 ]
50 - 4325 18808 9624 8939 10342
1 2 3 4 5 =j.

So far, we have only derived the last two rows of the covariance matrix. By
inverting the initial matrix of sums of squares and products of the independent
variables, bringing 0-1888 to the top left corner and 4-1476 to the bottom right,
and reducing in the same way, we can derive two more rows (the first two). To
derive the third row we must return to that stage of reduction at which Dy is ex-
pressed as a third order determinant. If we replace the first column of this deter-
minant by each. of the five columns of the associated matrix of order 3 x 5, the five
resulting third-order determinants will be the five Dy;; and since 5-2 = 142 = 3,
the same five determinants will result by treating the third-order stage of the
reduction of the inverted matrix of sams of squares and products in the same way:

Dy =" 016714 —160592 ~0-02406" » P1; DIy = —5:2437H - 160592 — 0-02406 1 x P71}

—1-02392  1-51139 - (106964 DGOSR 1-3113% - -0-06964
| 014841 —0-06964 021693 | 070322 - 006961 0-21693;

X PV Des 188913X | 160592 0-02406 | x P

Dy, = 1-38913 X 18IL89 - 006964
—0-06904  0-21693

—0-06964 021693

Dy == 1-33913 % | 1-60592 (02406

[ 181138 006964

These five determinants are then evaluated and divided by D, to give the five
elements £;;.

If our example had morc independent variables, it would be necessary to go
farther back to complete the covariance matrix: with seven variables, the first
step, with direct and inverted matrices, would give rows 1, 2, 6, and 7; rows 3 and
5 could be derived from the third-order determinants, but row 4 must be derived
from the fourth-order stage in the reduction of Dg and its associated matrix.

In this procedure, every element of the covariance matrix is determined twice,
except those in the principal diagonal, so affording an almost complete check. If
the number of independent variables is high, it may be felt that so complete a check
is superfluous, and it is quite a simple matter to omit some of the check calculations.
Thus in our fifth-order example, after the first two and last two rows have been
calculated, we may utilize the symmetry relation £;; = £;; to write in the first two
and last two columns, leaving only £;, to be determined.

X P73 where P = (414763 X (0-33102)2,




