SHORT COMMUNICATIONS

A further occurrence of phosgenite.

In a recent note Kingsbury¹ described two new localities for phosgenite in the United Kingdom. This mineral has some interest in building since it may be a corrosion product of lead materials in contact with chloride solutions. Opportunity was taken to establish the standard data when a sample found by Mr. G. W. Mack in an ancient lead pot deep in Wookey Hole was presented for study in 1948. The mineral occurs as flattened plates about $1 \times 1 \times 0.3$ cm. maximum, colourless and for the most part clear. Chemical analysis by R. S. Gillett gave: PbO 81·2, Cl 12·6, CO₂ 8·0 %, equivalent to Pb₂(CO₃)Cl₂. The crystals have refractive index about 2·15, uniaxial positive; crystallographically the most prominent face is c {001}; other forms identified include u {120}, x {111}, m {110}, b {010}, and o {021}. The material has the high specific gravity of 6·15. An X-ray powder diffraction pattern using filtered Co- $K\alpha$ radiation gave the following results:

d.	I_{ullet}	d.	1.	d.	I.	d.	I.
5·71 Å.	w	2·40 Å.	vvw	1·800 Å.	m	1·402 Å.	vvw
4.40	s	2.28	vw	1.757	mw	1.393	$\mathbf{v}\mathbf{v}\mathbf{w}$
4.04	$\mathbf{m}\mathbf{s}$	2.21	m	1.672	$\mathbf{m}\mathbf{w}$	1.364	w
3.61	vs	2.03	VW	1.636	vvw	1.352	w
3.50	vvw	1.97	nw	1.588	vvw	1.327	w
3.09	vvw	1.94	vvw	1.508	$\mathbf{v}\mathbf{w}$	1.294	$\mathbf{m}\mathbf{w}$
2.99	vw	1.91	$\mathbf{m}\mathbf{w}$	1.495	vvw	1.285	$\mathbf{v}\mathbf{v}\mathbf{w}$
2.86	vvw	1.887	mw	1.469	mw	1.277	vvw
2.79	vvs	1.841	vvw	1.445	mw	1.267	vw
2.56	vs	1.820	vvw	1.426	m		

If the unit cell proposed by Oftedal² is taken as a guide, the data above give unit-cell dimensions $a \cdot 8.112 \, \text{Å}$, $c \cdot 8.814 \, \text{Å}$, c/a = 1.086.

The formation of phosgenite under similar conditions has been reported by Lacroix from Maldia, Tunis,³ where an ancient metallic object was immersed in sea-water, and also from Bourbonne-les-Bains, France,⁴ where a lead pipe was exposed to a hot spring.

Building Research Station,

H. G. MIDGLEY

Watford, Herts.

¹ A. W. G. Kingsbury, Min. Mag., 1957, vol. 31, p. 500.

² I. Oftedal, Norsk Geol. Tidsskr., 1945, vol. 24, p. 79.

³ A. Lacroix, Compt. Rend. Acad. Sci. Paris, 1910, vol. 151, p. 276.

⁴ A. Lacroix, Min. France, 1909, vol. 3, p. 779.