SHORT COMMUNICATIONS

REFERENCES

BRINDLEY (J. C.), 1969. Amer. Assoc. Petroleum Geol. Mem. 12, 336-53. — and GUPTA (L. N.), 1974. Sci. Proc. Roy. Dublin Soc., Ser. A, 5, 145-58. CZAMANSKE (G. K.) and MIHALIK (P.), 1972. Journ. Petrol. 13, 493-509. KLEMENT (C.), 1887. Tschermaks Min. Petr. Mitt., Neue Folge, 8, 12-15. OMORI (K.) and HASEGAWA (S.), 1955. Journ. Jap. Assoc. Min., Petr., Econ. Geol. 39, 89-98. SIMPSON (E. S.), 1929. Contr. Min. W. Australia, 4, 103-4. SNETSINGER (K. G.), 1969. Amer. Min. 54, 431-6.

[Manuscript received 9 December 1974]

© Copyright the Mineralogical Society.

MINERALOGICAL MAGAZINE, DECEMBER 1975, VOL. 40, PP. 421-23

Aluminian xanthophyllite and paragonite from Japan

XANTHOPHYLLITE^I from the 900-m level of the Dōshinkubo ore deposit, Chichibu mine, Saitama Prefecture, Japan, was described by Harada, Kodama, and Sudo (1965). Very similar material occurs in the 800-m level of the same mine as a constituent of pre-ore skarn, closely associated with diopside, wollastonite, idocrase, ellestadite, calcite, and thaumasite (Harada, Nagashima, Nakao, and Kato, 1971). The atomic

ratios show that it has more dioctahedral character and is richer in aluminium than any xanthophyllite hitherto described. Chemical, optical, and X-ray data are included in Table I, with those of a margarite from the Shinkiura mine, Ōita Prefecture (Aoki and Shimada, 1965) for comparison. The optical absorption spectrum of this xanthophyllite is shown in fig. I. In analogy with the assignments of Faye (1968) for the spectra of biotite, phlogopite, and chlorite, the 25300 cm⁻¹ and 22300 cm⁻¹ bands of the xanthophyllite may be spin-forbidden *d-d* bands of octahedrally coordinated Fe²⁺, the

FIG. 1. Absorption spectrum of xanthophyllite; crystal flake 0.31 mm thick.

11800 cm⁻¹ and 9800 cm⁻¹ bands may be spin-allowed d-d transitions of Fe²⁺, and the 14500 cm⁻¹ band charge-transfer between Fe²⁺ and Fe³⁺. The weakness of this last

¹ This name is used here in its original sense, as a variety of clintonite low in Si, rather than the optical definition given by Deer, Howie, and Zussman (1962); there is no evidence that xanthophyllite from the type locality differs from clintonite in its optical orientation.

	I	2	3	4	5		1'	2'	3'	4′
SiO ₂	17.13	27.20	44.82	44.52	67.10	Si	1.204	1.800	2.870	2.943
Al ₂ O ₃	45.46	51.35	39.37	35.31	20.17	Aliv	2.796	2.200	1.130	1.028
Fe ₂ O ₃	0.06	Nil	Nil	1.63		Alvi	0.969	1.804	1.841	1.692
FeO	I.34	1.88	1.11	1.11		Fe ³⁺	0.003	_ `	_ ·	0.081
MnO	tr.	Nil	tr.	0.42		Fe ²⁺	0.028	0.094	0.028	0.001
MgO	17.48	0.04	0.06	Nil	0.04	Mg	1.830	0.004	0.006	-
CaO	13.89	12.77	0.42	Nil		Mn	tr.	Li 0.021	Mn —	0.026
Na ₂ O	0.02	0.53	8.11	1.00	11.92	Σoct	2.880	1.904	1·896	1.860
K ₂ O	0.17	0.13	0.43	9.86	_	Ca	1.046	0.905	0.031	_
Li ₂ O	Nil	0.08	Nil	Nil	_	Na	0.003	0.068	1.000	0.136
H_2O	4.30	6.00	5.21	5.88	_	к	0.012	0.011	0.032	0.831
F	0.08	0.02	0.10	0.01	_	Σ_{int}	1.064	0.974	1.072	0.967
Sum Less	99.83	99.98	99-96	99-84	99-29*	он	1.968	2.647	2 352	2.951
$\mathbf{O} \equiv \mathbf{F}$	0.03	0.05	0.02			F	0.017	0.010	0.050	0.005
Total	99·80	99·96	99.91	99 [.] 84		Σoh, f	1.985	2.657	2.372	2.953
a	5.210(12) 5.121(4)	5.140(4)	5.207(6)		0	10.012	9.343	9.628	9.047
Ь	9.014(6) 8·894(7)	8.909(9)	9.022(5)	_	α	1.652	1.637	1.577	1.566
с	9.827(6) 19.232(6)	19.357(8)	20.077(7)	_	ß	1.663	1 648	1.607	1.597
β	100.23(1	2)°95·46(1)°	94·58(I)°	95·74(6)°	_	γ	1.664	1.650	1.012	1.605
Sp. gr.	3.087	3.041	2.927	2.869		2V.~	17.00	60·5°	47.5°	41.0°
Туре	ıМ	$2M_1$	2 M 1	2M1	_		·		., .	-

TABLE I. Chemical, optical, and X-ray data for aluminian xanthophyllite, paragonite, margarite, muscovite, and albite. H. Sekino, analyst

1. Xanthophyllite from the 800-m level of the Doshinkubo, Chichibu mine.

2. Margarite from the Skinkiura mine.

3. Paragonite from Kabo, Oya-machi, Hyogo Prefecture.

4. Muscovite from Arayashiki, Ishikawa-gun, Fukushima Prefecture.

Albite from Kabo, Oya-machi, Hyogo Prefecture; obliquity $(2^{\beta}_{131-1\tilde{a}1})$ 1.08°: α 1.529, γ 1.538. 2V γ 80 to 85°. Including TiO₂ 0.01. Electron-probe analysis by Kô-ichi Tazaki. 5.

FIG. 2. Infra-red (left) and far infra-red (right) spectra of aluminian xanthophyllite (4), compared with those of margarite (3), muscovite (2), and paragonite (1).

SHORT COMMUNICATIONS

band and the appearance of the spin-forbidden and spin-allowed d-d bands of Fe²⁺ is in agreement with the chemical analysis, which shows the iron to be almost all ferrous.

A paragonite from Kabo, Öyamachi, Yabu-gun, Hyogo, Japan, occurring in pale pink crystals averaging 1 cm thick and 2 to 3 cm across, is nearer the end-member than any paragonite hitherto described; it occurs in close association with albite and jadeite in serpentine of the Sangun metamorphic belt. Chemical, optical, and X-ray data for the paragonite and albite are included in Table I, together with data for a muscovite, occurring in crystals averaging 2 cm thick and 15 cm across with albite and microcline in a granite pegmatite at Arayashiki, Ishikawa-machi, Ishikawa-gun, Fukushima Prefecture, Japan.

Infra-red spectra of the xanthophyllite and paragonite are shown in fig. 2 together with spectra of the above muscovite and margarite for comparison. It will be seen that the spectra of paragonite and muscovite differ most widely in the 90 to 150 cm⁻¹ region, where the vibrations of the interlayer cations occur (Ishii, 1969). The spectrum of the xanthophyllite is similar to that published by Farmer and Velde (1973) for material from the type locality, Zlatoust.

Acknowledgements. We wish to express our sincere gratitude to Professor T. Sudō and Professor G. Gottardi for helpful comments on the crystal chemistry of xanthophyllite and paragonite and to Dr. Kô-ichi Tazaki of the Hot Spring Research Institute, Okayama University, for the electron-probe analysis.

Dept. of Chemistry, Faculty of Science Tokyo University of Education, Otsuka Tokyo, Japan 112

Dept. of Earth Science, College of Arts and Sciences Tohoku University, Kawauchi, Sendai, Japan 980

Geological and Mineralogical Institute Tokyo University of Education, Otsuka Tokyo, Japan 112

REFERENCES

AOKI (Y.) and SHIMADA (N.), 1965. Journ. Min. Soc. Japan, 7, 87. DEER (W. A.), HOWIE (R. A.), and ZUSSMAN (J.), 1962. Rock-forming minerals, 3. London (Longmans). FARMER (V. C.) and VELDE (B.), 1973. Min. Mag. 39, 282. FAYE (G. H.), 1968. Canad. Min. 9, 403. HARADA (K.), KODAMA (H.), and SUDO (T.), 1965. Canad. Min. 8, 255. — NAGASHIMA (K.), NAKAO (K.), and KATO (A.), 1971. Amer. Min. 56, 1507. ISHII (M.), 1969. Journ. Min. Soc. Japan, 9, 193.

[Manuscript received 14 May 1974; revised 6 December 1974]

© Copyright the Mineralogical Society.

H. SEKINO

SATOSHI KANISAWA

K. Harada Yukihiro Ishikawa