The halotrichite group: the crystal structure of apjohnite

S. MENCHETTI and C. SABELLI
Centro di Studio per la Mineralogia e la Geochimica dei Sedimenti, Istituto di Mineralogia dell'Università di Firenze, Italy

Abstract

SUmmary. Apjohnite, $\mathrm{MnAl}_{2}\left(\mathrm{SO}_{4}\right)_{4} \cdot 22 \mathrm{H}_{2} \mathrm{O}$, is monoclinic, space group $P_{2} / c, a 6 \cdot 198(2), b 24 \cdot 347$ (4) , $c 21 \cdot 266$ (4) $\AA, \beta 100 \cdot 28(3)^{\circ}$ and $Z=4$. The crystal structure was determined by means of direct methods applied to X-ray data collected with a single-crystal diffractometer. At the end of the refinement, performed with least-squares method, the R index was $0 \cdot 039$.

The SO_{4} tetrahedra, $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ octahedra, and $\mathrm{MnO}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}$ octabedra are connected by a hydrogen bonding system; the only direct connection between polyhedra is by sharing of an oxygen between $\mathrm{S}(4)$ and Mn . In the asymmetric unit there are twenty-two water molecules, five of which lie in channels of the structure and are not linked to the cations but only to ligand water oxygens by means of hydrogen bonds.

Powder data indicate a close structural relationship between apjohnite, halotrichite, and pickeringite.
The halotrichite group comprises a series of minerals that present a good example of isomorphic substitutions. The general formula can be written $A B_{2}\left(\mathrm{SO}_{4}\right)_{4} .22 \mathrm{H}_{2} \mathrm{O}$, where A is mainly $\mathrm{Mg}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Mn}^{2+}$ while B is Al^{3+} (subordinately Fe^{3+} and Cr^{3+}). Several analyses support the existence of a complete series between the Fe^{2+} endmember (halotrichite) and the Mg^{2+} analogue (pickeringite). It is likely that the series extends also towards the Mn^{2+} end-member (apjohnite).

A morphological and X-ray study on pickeringite and halotrichite was performed by Bandy (1938), who reported for pickeringite the space group P2/m; morphological study by Gordon (1942) indicated sphenoidal symmetry, so that in Dana's System (Palache et al., 1951) the space group is given as P_{2}.

The crystal structure determination presented some difficulties because of the unusually high number of atoms (89) in the asymmetric unit and because of the thin hair-like shape of the crystals. The present investigation, dealing with the crystal structure of apjohnite, forms a part of a series of crystal-chemical studies on hydrated sulphate minerals.

Experimental. Many acicular crystals of pickeringite from Vulcano, from Vesuvius, and from Elba were examined together with some halotrichite crystals, but they were invariably found to be too thin to give reliable intensity data. Crystals suitable for the X-ray study were found only on a sample of apjohnite from Terlano, Bolzano, Italy, kindly supplied by the Revd. Tullio Stolcis.

A partial chemical analysis of this sample was performed by Dr. A. Bencini by atomic absorption. The results for $\mathrm{Mn}, \mathrm{Mg}, \mathrm{Zn}$, and Fe yield the formula: $\left(\mathrm{Mn}_{0.64}\right.$, $\left.\mathrm{Mg}_{0 \cdot 28}, \mathrm{Zn}_{0.06}, \mathrm{Fe}_{0 \cdot 02}\right) \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{4}, 22 \mathrm{H}_{2} \mathrm{O}$. Two different samples from the same locality (C) Copyright the Mineralogical Society.
were previously studied by Meixner and Pillewizer (1937), who found one to be a manganoan pickeringite and the other a magnesian apjohnite. Unfortunately Pillewizer's A analysis is not fully reliable because of the noticeable amount (c. 25%) of admixed epsomite; however, after deducting this one can evaluate an atomic ratio $\mathrm{Mn} / \mathrm{Mg}$ of $\mathrm{I} \cdot 2$, while the B sample gives a ratio of $0 \cdot 26$. The value found in the present study $(\mathrm{Mn} / \mathrm{Mg}=2.29)$ together with the two previous ones, indicates a large diadochy between the two cations.

Table I. X-ray powder pattern of apjohnite. Philips diffractometer, Ni-filtered $\mathrm{Cu}-\mathrm{K} \alpha$ radiation, internal NaF standard

$h k l$	$d_{\text {calc }}$	$d_{\text {obs }}$	I	$h k l$	$d_{\text {calc }}$	$d_{\text {obs }}$	I	$h k l$	$d_{\text {calc }}$	$d_{\text {obs }}$	I
	A	A			A	A			A	A	
002	$\left.\begin{array}{l} 10.462 \\ 10.522 \end{array}\right\}$	10.55	10	063 124	$\left.\begin{array}{l} 3 \cdot 507 \\ 3 \cdot 506 \end{array}\right\}$	$3 \cdot 515$	100	İ74 222	$\left.\begin{array}{l} 2 \cdot 723 \\ 2 \cdot 726 \end{array}\right\}$	$2 \cdot 726$	5
012	9.612	$9 \cdot 65$	10	016	$3 \cdot 452$	3.454	II	$\overline{1} 82$	2.688	2.689	19
022	$7 \cdot 935$	7.96	10	026	$3 \cdot 353$	$3 \cdot 36 \mathrm{I}$ \}	8	232	$2 \cdot 644$	2.650	I
023	6.052	$6 \cdot 07$	20	I 34	$3 \cdot 337$	$3 \cdot 346$	8	213	$2 \cdot 612$	2.617	10
04I	$5 \cdot 845$	5.85	5	072	$3 \cdot 301\}$	$3 \cdot 306$				2.583	I
I2I	$5 \cdot 495$	$5 \cdot 48$	5	162	$3 \cdot 3125$	$3 \cdot 306$	4			2.563	12
033	$5 \cdot 290\}$		8	161	3.283	3.294	4			2.524	4
042	$5 \cdot 26 \mathrm{I}$)	$5 \cdot 29$	8	İ 16	3.261	$3 \cdot 268$	3			$2 \cdot 465$	8B
İ3	4.954	4.97	18	İ45	$3 \cdot 211$	3.212	3			$2 \cdot 408$	9
130	$4 \cdot 875$	$4 \cdot 88$	5	126	3•177)					$2 \cdot 288$	4
024	$4 \cdot 806$	$4 \cdot 82$	90	163	$3 \cdot 166$ \}	$3 \cdot 175$	10			$2 \cdot 258$	I
İ23	$4 \cdot 673$	$4 \cdot 69$	5	073	3.113	3.119	2			2.239	6
131	4.605	$4 \cdot 61$	6	202	3.079	3.080	2			2.199	3
122	$4 \cdot 547$	$4 \cdot 55$	3	$\overline{\mathrm{L}} \mathrm{I}$	3.073	3.080	2			2.168	2
052	4.415	4.41)	6	I36	3.050	3.055	9			$2 \cdot 133$	4
İO4	$4 \cdot 375$	$4 \cdot 38$)	6	210	$3.026)$	3.032				2.087	5
İ4	$4 \cdot 329$	$4 \cdot 34$ \}		046	3.026	3032	5			2.064	3 B
140	4308	$4 \cdot 32$	27	I 64	$2 \cdot 975)$					2.051	3B
İ42	$4 \cdot 173\}$	4.18	12	213	$2 \cdot 975$	$2 \cdot 974$	I5			2.020	13
II 3	4.170	$4 \cdot 18$	12	017	2.967					1.977	4
İ24	4.117)		22	İ46	2.895	2.901	II			1.960	6
141	4.118)	$4 \cdot 13$	22	${ }^{2} 14$	2.847					I.896	5
123	3.997	4.008	10	172	2.837 \}	$2 \cdot 840$	12			I.879	12B
025	3.958	3.967	23	056	2.835					I.866	8
İ43	3.891	3.902	6	224	$2 \cdot 790$					I-840	2 B
062	$3 \cdot 783$	3.792	33	202	$2 \cdot 797\}$	$2 \cdot 793$	I I			1.827	3
151	3.673	$3 \cdot 676$ \}		083	$2 \cdot 789$)					I-784	$4 B$
104	$3 \cdot 661$	3.667)	4	212	$2 \cdot 7781$					I•715	4
114	3.620	$3 \cdot 625$	6	$\begin{aligned} & 231 \\ & 165 \end{aligned}$	$\left.\begin{array}{l} 2 \cdot 767 \\ 2 \cdot 766 \end{array}\right\}$	$2 \cdot 769$	6				

The powder pattern of apjohnite is reported in Table I; it was partially indexed on the basis of the unit-cell dimensions obtained from a single crystal and taking into account the intensities as measured on a single-crystal diffractometer. By comparison of Table I with the JCPDS cards II-506 and 12-299 (JCPDS, 1971) the close structural relationship between apjohnite, halotrichite, and pickeringite is evident. The unit cell dimensions were determined from twenty-five high theta reflections measured on a single-crystal diffractometer: $a 6 \cdot 198$ (2), $b 24.347$ (4), c $2 \mathrm{I} \cdot 266$ (4) \AA, and β 100.28 (3) ${ }^{\circ}$. The observed density, determined by the flotation method, is $\mathrm{I} \cdot 8 \mathrm{I} \mathrm{g} \mathrm{cm}^{-3}$ and the
calculated value is $\mathrm{I} \cdot 836 \mathrm{~g} \mathrm{~cm}^{-3}$. The space group, uniquely determined from the systematic absences, is $P 2_{1} / c$. The transformation matrix from Bandy's (1938) orientation to the one of the present study is ool/oio/ $\overline{\mathrm{I}}$ oī.

Intensities were collected with a Philips PW inoo 4 -circle computer-controlled diffractometer (Centro di Cristallografia Strutturale del CNR, Pavia, Italy), with $\mathrm{Cu}-K \alpha$ radiation and the $\omega-2 \theta$ scan technique. A total of 3349 independent reflections in the range $2^{\circ}<\theta<50^{\circ}$ were measured with scan speed $0.025^{\circ} / \mathrm{sec}$ and scan range $1 \cdot 0^{\circ}$; only 2423 reflections were judged to be actually measured according to the criterion $I \geqslant 3 \sigma(I)$. Intensities were corrected for Lorentz-polarization effects, while absorption correction was considered negligible because the crystal was so thin.

Structure determination and refinement. The structure was solved by means of direct methods using the MULTAN computer program (Germain, Main, and Woolfson, 1971). In spite of the high number of atoms in the asymmetric unit, MULTAN was able to supply automatically the correct solution, working on 400 normalized structure amplitudes with $E \geqslant \mathrm{I} \cdot 55$. The Fourier synthesis computed from the phasing of these 400 structure factors gave clear indications on all atoms but five oxygens, and of course the hydrogen atoms. The R index (defined as $R=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| \Sigma\left|F_{\mathrm{o}}\right|$) was 0.32 . In the next electron density map the missing oxygen atoms were located.

The refinement of the structure was performed by the least-squares method; all observed reflections were assigned a weight $\mathrm{I} / \mathcal{V}_{\sigma}$ with σ deriving from counting statistics. Thermal parameters, at first individual isotropic and later anisotropic, were allowed to vary. Towards the end of the refinement a difference Fourier synthesis was computed in order to locate the hydrogen atoms. Sufficiently reliable indications were obtained for thirty-two hydrogens, which were subsequently refined with a thermal parameter fixed at $7 \cdot 5 \AA^{2}$. The twelve missing hydrogen atoms were located taking into account the consistency of the general hydrogen-bonding system; their positional parameters were computed assuming that H atoms lie approximately on the donoracceptor alignment about one-third of the donor-acceptor distance from the donor. These latter twelve atoms were not refined. With the atom parameters given in Tables II and III and taking into account the anomalous dispersion correction for the divalent cation (Cromer and Liberman, 1970) the final R index was 0.039 for all observed reflections and 0.059 including the unobserved ones. The atomic scattering factors for neutral atoms were obtained by interpolation of the values given by Cromer and Waber (1965); for hydrogen atoms the values given by Stewart, Davidson, and Simpson (1965) were used. A table of observed and calculated structure factors is deposited in the library of the Department of Mineralogy, British Museum (Natural History).

Discussion. As one can evaluate from the high number of water molecules in the chemical formula, the hydrogen-bonding system is of particular relevance in this structure. In fact the three-dimensional connection in apjohnite is really due to bonds of this kind, in the same way as in the structure of alunogen (Menchetti and Sabelli, 1974). Since the ratio between the number of water molecules (22) and cations (3) exceeds the oxygen coordination of the cations (C.N. $=6$) one can conclude that at least four water molecules cannot behave as ligands. Actually in apjohnite there are seventeen ligand water molecules and five 'free' water molecules. This is due to the
Table II. Positional parameters, thermal parameters $\left(\times 10^{5}\right)$ and equivalent isotropic temperature factors $\left(\AA^{2}\right)$ according to Hamilton. The anisotropic temperature factors are in the form
$T=\exp \left\{-\left(h^{2} \beta_{11}+k^{2} \beta_{22}+l^{2} \beta_{33}+2 h k \beta_{12}+2 h l_{13}+2 k l \beta_{23}\right)\right\}$

	x / a	y / b	z/c	$\mathrm{B}_{\text {eq. }}$.	β_{11}	β_{33}	β_{33}	β_{13}	β_{18}	β_{23}
Mn	$0.36995(17)$	$0.59600(4)$	$0.08053(5)$	1.09	757(35)	40(2)	64(3)	-I 8 (8)	2 (8)	-5(2)
$\mathrm{Al}^{(\mathrm{I})}$	$0 \cdot 44015$ (29)	$0.61206(7)$	$0 \cdot 42426(8)$	$1 \cdot 29$	892(58)	$46(4)$	$78(5)$	-2I(12)	3(13)	$4(3)$
$\mathrm{Al}(2)$	$0.68679(28)$	$0.34315(7)$	$0 \cdot 19779(8)$	$1 \cdot 24$	937(59)	47(4)	67(5)	II(12)	$26(13)$	-3(4)
S(I)	$0 \cdot 08662(25)$	$0 \cdot 24404(6)$	$0 \cdot 52658(7)$	$1 \cdot 45$	985(52)	$53(3)$	$90(4)$	-15(11)	16 (12)	-2(3)
S(2)	$0.96419(24)$	$0.46510(6)$	$0 \cdot 38825(7)$	$1 \cdot 32$	972 (50)	5 5 (3)	$71(4)$	-24(10)	24(11)	-2(3)
S(3)	$0 \cdot 14189(24)$	$0 \cdot 19411$ (6)	$0.25596(7)$	$1 \cdot 49$	1099(53)	$63(3)$	$76(4)$	55(11)	$52(12)$	11(3)
S(4)	$0 \cdot 16025(25)$	$0 \cdot 47277(6)$	$0 \cdot 10454(7)$	I. 59	$1214(54)$	$61(3)$	$81(4)$	-52(II)	11(12)	10 (3)
O (1)	$0 \cdot 1310$ (6)	0.2170 (2)	$0.4679(2)$	2.8 I	2080(154)	1119)	166(13)	-49(30)	$212(36)$	-58(9)
$\mathrm{O}(2)$	$0.0271(6)$	$0 \cdot 3022(\mathrm{I})$	$0 \cdot 5126(2)$	2.23	1399 (140)	$61(9)$	175(12)	$7(30)$	45(32)	$9(8)$
$\mathrm{O}(3)$	-0.0941(6)	$0.2154(2)$	0.5490 (2)	2.47	1751 (147)	II7(9)	118(12)	$-110(30)$	$119(34)$	10(9)
$\mathrm{O}(4)$	0.2866(6)	$0 \cdot 2426(2)$	$0.5763(2)$	2.75	$1602(152)$	96(9)	177 (13)	$19(3)^{1}$	-164(35)	7(9)
O(5)	I.OII8(6)	$0 \cdot 4371(2)$	$0.3311(2)$	2.40	1640(146)	$100(9)$	$137(12)$	$13(30)$	$87(33)$	-48(9)
$\mathrm{O}(6)$	$0.9042(6)$	$0 \cdot 5228(\mathrm{I})$	$0 \cdot 3727(2)$	2.21	1487 (I41)	$66(9)$	155(12)	$57(29)$	$13(32)$	$15(8)$
$\mathrm{O}(7)$	1•656(6)	$0 \cdot 4644(2)$	$0 \cdot 4380$ (2)	2.51	1799 (150)	$83(9)$	$131(12)$	-68(29)	-220(33)	27(9)
$\mathrm{O}(8)$	0.7860 (6)	$0 \cdot 4360$ (2)	$0 \cdot 4119(2)$	2.83	1966(155)	132(10)	144(13)	$-176(31)$	150 (35)	2(9)
$\mathrm{O}(9)$	- 1249 (6)	$0 \cdot 1833(2)$	$0 \cdot 3228(2)$	3.20	2901 (170)	149(10)	$110(12)$	$215(34)$	214(35)	42(9)
$\mathrm{O}(10)$	$0 \cdot 2217(6)$	$0.2505(2)$	$0 \cdot 2490$ (2)	2.58	1528(144)	73 (8)	204(13)	-83(29)	$28(35)$	149)
$\mathrm{O}(\mathrm{II})$	-0.0809(6)	$0 \cdot 1890$ (2)	$0 \cdot 2155(2)$	2.67	1456(147)	116 (10)	167(13)	$18(30)$	3(34)	-28(9)
$\mathrm{O}(\mathrm{I} 2)$	0.2933(6)	$0 \cdot 1541(2)$	$0 \cdot 2342(2)$	2.56	2066(150)	108(9)	124(12)	$258(31)$	160 (33)	28(9)
$\mathrm{O}(13)$	-.1610(6)	$0 \cdot 4437(2)$	$0 \cdot 1659(2)$	2.74	1670 (146)	127(10)	162(13)	144(30)	$146(34)$	80(9)
$\mathrm{O}(14)$	$0 \cdot 2279(7)$	$0 \cdot 4341(2)$	$0.0593(2)$	3.65	2299 (164)	195(II)	177(13)	-94(35)	$225(37)$	-79(10)
$\mathrm{O}(15)$	-0.0616(6)	$0.4935(2)$	0.0801(2)	$2 \cdot 97$	1825(156)	128(10)	$162(13)$	-16(32)	-64(36)	23(9)
$\mathrm{O}(16)$	$0 \cdot 3170(6)$	$0 \cdot 5185(2)$	$0 \cdot 1176(2)$	$3 \cdot 24$	2004(160)	86 (ro)	231 (14)	-226(31)	-216(37)	32(9)
$\mathrm{O}(17)$	0.7097(6)	$0.5854(\mathrm{I})$	$0 \cdot 1272(2)$	$2 \cdot 47$	1574(144)	102(9)	153(12)	23(29)	99(33)	$-15(9)$
$\mathrm{O}(18)$	$0 \cdot 3275(6)$	$0.6323(2)$	$0 \cdot 1728(2)$	2.93	1406(143)	$150(10)$	173 (13)	$72(31)$	47(33)	-48(9)
O (19)	0.4403 (6)	$0.6756(2)$	$0.0437(2)$	3.17	1743(147)	$121(10)$	207(13)	$-142(31)$	$-\mathrm{IO3}(35)$	46(9)
$\mathrm{O}(20)$	0.0329(6)	$0.6122(2)$	$0 \cdot 0451(2)$	$2 \cdot 30$	1618(144)	101(9)	119(12)	8(29)	73(33)	$-20(9)$

TABLE II (cont.)

	x / a	y / b	z / c	$\mathrm{B}_{\text {eq. }}$.	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
$\mathrm{O}(21)$	$0 \cdot 4004(7)$	$0.5611(2)$	-0.0100(2)	$4 \cdot 82$	2371(191)	241(12)	304(16)	- 114 (39)	205(44)	-99(I2)
$\mathrm{O}(22)$	$0.4974(6)$	0.5572(1)	$0.3680(2)$	2.02	I255(136)	88(8)	II7(II)	-9128)	40(3I)	-99(12)
$\mathrm{O}(23)$	- 1491 (6)	0.6181 (I)	$0.3781(2)$	I. 84	971(130)	$69(8)$	132(I2)	- II (26)	4(30)	I2(8)
O(24)	$0.5339(6)$	0.6666 (I)	0.3724 (2)	1.89	1434(133)	$69(8)$	103(11)	-23(27)	$38(30)$	$4{ }^{(8)}$
$\mathrm{O}(25)$ $\mathrm{O}(26)$	$0 \cdot 3746(6)$	$0.6674(\mathrm{I})$	0.4798 (2)	$2 \cdot 11$	1164(133)	88(9)	143(12)	$33(27)$	72(31)	$-28(8)$
$\mathrm{O}(26)$ $\mathrm{O}(27)$	$0.7283(6)$ $0.3524(6)$	$0.6076(1)$ $0.5570(\mathrm{I})$	$0.4709(2)$ $0.4763(2)$	I 179 I 99	$1285(131)$ $1765(140)$	$72(8)$ $72(8)$	92(II)	$-38(27)$ $-92(28)$	- II(30)	$12(8)$
O(28)	0.5345 (6)	0.3423 (1)	$0 \cdot 1120(2)$	1.99 1.98	$1765(140)$ 1460 (135)	$72(8)$ $82(8)$	$94(\mathrm{II})$ $92(\mathrm{II})$	$\begin{array}{r}-92(28) \\ \hline 25(28)\end{array}$	$90(31)$ $-68(31)$	$2(8)$ $4(8)$
O(29)	0.9393(6)	$0.3164(\mathrm{I})$	$0 \cdot 1698$ (2)	1.98	1346(134)	$85(9)$	109(II)	63 (27)	71 (31)	-4(8)
$\mathrm{O}(30)$	$0 \cdot 6010$ (6)	$0.2698(1)$	$0.2096(2)$	1.88	1216(137)	$74(8)$	113 (11)	6 (27)	24(31)	6(8)
O(31)	0.8392 (6)	0.3437 (I)	$0 \cdot 2828(2)$	$2 \cdot 2 \mathrm{I}$	1645(141)	91(9)	109(12)	$15(29)$	21(32)	- I(9)
$\mathrm{O}(32)$	$0.4301(6)$	$0.3678(\mathrm{I})$	$0.2238(2)$	I. 89	1218(134)	$90(9)$	104(11)	79(28)	$122(30)$	2 (8)
$\mathrm{O}(33)$	$0 \cdot 7696$ (6)	0.4155 (1)	$0.1850(2)$	$2 \cdot 14$	1549(140)	74(9)	133(12)	-24(28)	64(32)	$2(8)$
$\mathrm{O}(34)$	$0.8038(7)$	$0 \cdot 2629$ (2)	0.3618 (2)	$5 \cdot 64$	5442(212)	226(13)	205(17)	$337(41)$	269(47)	36(12)
$\mathrm{O}(35)$ $\mathrm{O}(36)$	$0.2122(7)$	$0.5394(2)$	0.2608 (2)	4.45	3324(192)	206(II)	197(15)	-126(38)	$111(42)$	-34(1I)
$\mathrm{O}(36)$ $\mathrm{O}(37)$	$0.6806(6)$	0.5091 (2)	0.2345 (2)	$3 \cdot 53$	2919(164)	128(ro)	$175(14)$	$126(33)$	55(37)	8(10)
$O(37)$ $O(38)$	$0.4190(6)$	0.3913 (2)	0.3425 (2)	$3 \cdot 22$	1942(151)	163(ro)	168(I3)	$51(32)$	$117(35)$	-32(10)
O(38)	0.4073 (7)	$0 \cdot 2954$ (2)	$0.4097(2)$	$4 \cdot 38$	3362(181)	196(12)	183(14)	-75(38)	-4(40)	1(10)

absence of water oxygens shared between polyhedra and to the presence of one oxygen, namely $\mathrm{O}(\mathrm{x} 6)$, that is linked to both $\mathrm{S}(4)$ and Mn , so making the only direct connection between polyhedra.

Each of the ligand water oxygens acts as proton donor towards sulphate oxygens or towards sulphate and free water oxygens. Donor-acceptor distances involved in these latter bonds (that is ligand water \rightarrow free water) range from 2.60 to $2.66 \AA$ so that the free water molecules are to be considered connected strongly enough to the whole

Table III. Positional parameters of H atoms

	x / a	y / b	z / c		x / a	y / b	z / c
H(I)	0.781 (9)	0.620(2)	$0 \cdot 142(3)$	H(23)	0.45	0.31	$0 \cdot 10$
H(2)	0.793 (9)	$0.561(2)$	$0 \cdot 112(3)$	H(24)	0.43	$0 \cdot 37$	0.09
H(3)	$0.210(9)$	$0.647(2)$	0.173 (3)	H(25)	0.913(9)	$0 \cdot 310(2)$	- 120 (3)
H(4)	$0 \cdot 442(9)$	0.643 (2)	$0 \cdot 196(3)$	H(26)	1.048(9)	$0 \cdot 293$ (2)	$0 \cdot 197(3)$
H(5)	0.58	0.69	0.04	H(27)	$0 \cdot 474(9)$	$0.266(2)$	$0.226(3)$
H(6)	0.32	0.69	0.01	H(28)	$0.711(9)$	$0 \cdot 248(2)$	$0.211(3)$
H(7)	$-0.015(9)$	$0.651(2)$	0.040 (3)	H(29)	$0 \cdot 888(9)$	$0.38 \mathrm{r}(2)$	$0.303(3)$
H(8)	-0.029(9)	0.593 (2)	$0.008(3)$	$\mathrm{H}(30)$	0.83	$0 \cdot 3 \mathrm{I}$	0.31
H(9)	0.52	$0 \cdot 56$	$\bigcirc .03$	H(3I)	$0.442(9)$	$0 \cdot 379$ (2)	$0 \cdot 260(3)$
H(Io)	0.29	0.54	-0.03	H(32)	$0.332(9)$	$0.398(2)$	$0 \cdot 195(3)$
H(II)	0.632(9)	$0.543(2)$	$0 \cdot 380(3)$	H(33)	$0 \cdot 718(9)$	$0.455(2)$	- 2009 (3)
$\mathrm{H}(\mathrm{I} 2)$	$0.421(9)$	$0 \cdot 548(2)$	$0.329(3)$	H(34)	0.92	0.43	- 19
H(13)	$0 \cdot 068(9)$	$0.585(2)$	$0 \cdot 377(3)$	H(35)	$0.732(9)$	$0.262(2)$	$0 \cdot 326(3)$
$\mathrm{H}(14)$	$0 \cdot 137(9)$	$0.644(2)$	$0 \cdot 346$ (3)	H(36)	$0.953(9)$	$0 \cdot 232(2)$	$0 \cdot 366(3)$
H(15)	$0.608(9)$	$0.703(2)$	- 399 (3)	H(37)	0.214(9)	0.570 (2)	$0.235(3)$
H(16)	$0.607(9)$	$0 \cdot 658(2)$	$0 \cdot 348$ (3)	$\mathrm{H}(38)$	0.19	$0 \cdot 51$	0.23
H(17)	$0.225(9)$	0.679 (2)	$0.476(3)$	H(39)	0.69	0.54	0.20
H(18)	$0.491(9)$	0.690 (2)	$0.521(3)$	H(40)	0.75	0.51	0.28
$\mathrm{H}(19)$	$0.828(9)$	0.641 (2)	$0.483(3)$	H(4)	0.547(9)	$0.412(2)$	$0.361(3)$
H(20)	0.764(9)	$0.585(2)$	0.510 (3)	H(42)	0.292(9)	$0.417(2)$	$0 \cdot 338(3)$
H(2I)	$0 \cdot 307(9)$	$0.519(2)$	0.460(2)	H(43)	$0 \cdot 506(9)$	$0 \cdot 280$ (2)	$0.385(3)$
H(22)	$0 \cdot 302(9)$	$0.563(2)$	$0 \cdot 510(3)$	H(44)	0.41	$0 \cdot 33$	$0 \cdot 39$

structural arrangement. These free water molecules lie in channels, with an hexagonal outline (see fig. I), running parallel to [roo]; these channels are built up by the mutual arrangement of three octahedra and three tetrahedra. This feature is similar to that already observed in the structure of alunogen (Menchetti and Sabelli, 1974). The weak \mathbf{H} bonds donated by the free molecules are directed towards oxygen atoms facing the channel, except for the two bonds in which $\mathrm{O}(38)$ is the donor; this atom indeed is bound to two free water molecules. All distances and angles involving hydrogen atoms are shown in Table IV.

The general hydrogen bonding system, however, is not without uncertainties: for instance the configuration of hydrogen atoms around $\mathrm{O}(34)$ is questionable. Within the limit of $3.30 \AA, \mathrm{O}(34)$ has five surrounding oxygen atoms. Two of these, namely $O(3 \mathrm{I})$ and $\mathrm{O}(38)$, are likely to act as proton donors towards $\mathrm{O}(34)$. The other three, $\mathrm{O}(\mathrm{I}), \mathrm{O}(9)$, and $\mathrm{O}(30)$, are respectively $2.97,3 \cdot 00$, and $3.26 \AA$ from $\mathrm{O}(34)$. On the basis of the above values one could postulate the bonds $\mathrm{O}(\mathrm{I}) \ldots \mathrm{H}-\mathrm{O}(34)-\mathrm{H} \ldots \mathrm{O}(9)$; but
the $\mathrm{O}(\mathrm{I})-\mathrm{O}(34)-\mathrm{O}(9)$ angle $\left(64^{\circ}\right)$ is very distant from the theoretical water angle. The $\mathrm{O}(9)-\mathrm{O}(34)-\mathrm{O}(30)$ angle instead is 85°; it fits better the acceptor-donor-acceptor configuration. Two more considerations, unfortunately contradictory, are to be taken into account: in the difference Fourier map there is no positive area in the position expected for a hydrogen bridging $\mathrm{O}(34)$ to $\mathrm{O}(\mathrm{I})$; an opposite indication is supplied by the charge balance (see Table V) which shows $O(1)$ to be underbonded and $O(30)$ to be overbonded.

Fig. I. Projection of the structure viewed along the a-axis.

As mentioned above, the two independent Al atoms are both coordinated by six water oxygens, while Mn is co-ordinated by five water oxygens and one sulphate oxygen. Examination of bond angles and bond lengths, reported in Tables VI and VII, shows that the three octahedra are almost regular. Within the standard deviation limits, the mean Al-O distance, $\mathrm{I} .884 \AA$, is identical to the value of $\mathrm{I} .882 \AA$ found in the structure of alunogen (Menchetti and Sabelli, 1974). In the International Tables for X-ray Crystallography (1962), the mean value of $\mathrm{I} \cdot 9 \mathrm{I} \AA$ for the Al-O distance is reported. In the Mn octahedron the $\mathrm{Mn}-\mathrm{O}$ distance, $2.093 \AA$, is noticeably shorter than the mean $\mathrm{Mn}-\mathrm{O}_{\mathrm{w}}$ distance of $2 \cdot \mathrm{I} 64 \AA$. In the International Tables the mean value for the $\mathrm{Mn}-\mathrm{O}$ distance is given as $2 \cdot 2 \mathrm{I} \AA$; a similar value, $2 \cdot 206 \AA$, was found in the structure of hureaulite (Menchetti and Sabelli, 1973) where no sharp distinction between $\mathrm{Mn}-\mathrm{O}$ and $\mathrm{Mn}-\mathrm{O}_{\mathrm{w}}$ distances is present. The shorter values found in apjohnite are to be related to the presence of Mg^{2+} substituting for Mn^{2+}, while in hureaulite a substitution of Fe^{2+} for Mn^{2+} was found.

No unusual feature is shown by the four independent SO_{4} tetrahedra for which a mean S-O bond length of $1.476 \AA$ was found. No lengthening of the $\mathrm{S}(4)-\mathrm{O}(\mathrm{I} 6)$
Table IV. Distances and angles involving hydrogen atoms. The second numbering refers to the symmetry

A	B C D E	A-B	B-C	A-C	C-D	D-E	C-E	$\widehat{B C D}$	$\widehat{A C E}$	$\widehat{\mathrm{ABC}}$	$\widehat{\mathrm{CDE}}$
$\mathrm{O}(9,8)$	$-\mathrm{H}(1)-\mathrm{O}(17)-\mathrm{H}(2)-\mathrm{O}(15,1)$	$\mathrm{I} \cdot 78 \AA$	0.97 Å	2.733(5) \AA	0.89 A	$2.04 \AA$	2.919 (6) \AA	$115{ }^{\circ}$	129.1(2) ${ }^{\circ}$	$169{ }^{\circ}$	168°
$\mathrm{O}(9,9)$	$-\mathrm{H}(3)-\mathrm{O}(18)-\mathrm{H}(4)-\mathrm{O}(12,8)$	2.27	0.81	3.083(6)	0.83	2.02	2.839(5)	122	123.2(2)	177	167
$\mathrm{O}(\mathrm{I}, 8)$	$-\mathrm{H}(5)-\mathrm{O}(19)-\mathrm{H}(6)-\mathrm{O}(3,9)$	$1 \cdot 94$	0.95	2.892 (6)	1.00	I.81	2.812(5)	113	$114.7(2)$	178	178
$\mathrm{O}(\mathrm{I}, 9)$	$-\mathrm{H}(7)-\mathrm{O}(20)-\mathrm{H}(8)-\mathrm{O}(14,7)$	I•76	0.98	2.742(5)	0.93	1.85	2.745(5)	108	98.4(2)	174	164
$\mathrm{O}(14,5)$	$-\mathrm{H}(9)-\mathrm{O}(21)-\mathrm{H}(10)-\mathrm{O}(15,7)$	I.79	0.92	2.699(7)	0.90	I.81	$2 \cdot 699$ (6)	112	116.1(2)	171	171
$\mathrm{O}(6)$	$-\mathrm{H}(11)-\mathrm{O}(22)-\mathrm{H}(12)-\mathrm{O}(35)$	I-79	0.90	2.642(5)	0.90	1.78	2.657(5)	118	$117.7(2)$	157	164
$\mathrm{O}(6,2)$	$-\mathrm{H}(13)-\mathrm{O}(23)-\mathrm{H}(14)-\mathrm{O}(11,9)$	I-82	0.94	$2.763(5)$	0.92	$1 \cdot 70$	2.612(5)	126	$120.7(2)$	178	173
$\mathrm{O}(4,4)$	$-\mathrm{H}(15)-\mathrm{O}(24)-\mathrm{H}(16)-\mathrm{O}(12,8)$	1.54	I•10	$2 \cdot 625(5)$	0.77	I. 96	$2.692(5)$	108	104.0 (2)	170	158
$\mathrm{O}(2,6)$	$-\mathrm{H}(\mathrm{I} 7)-\mathrm{O}(25)-\mathrm{H}(18)-\mathrm{O}(38,4)$	I 69	0.96	$2.630(5)$	I. 16	1.55	2.652(5)	113	$100 \cdot 8(2)$	167	157
$\mathrm{O}(2,4)$	$-\mathrm{H}(19)-\mathrm{O}(26)-\mathrm{H}(20)-\mathrm{O}(7,3)$	1.65	I.02	$2 \cdot 656(5)$	1.00	1.63	$2.610(5)$	101	113.3 (2)	168	165
$O(7,2)$	$-\mathrm{H}(2 \mathrm{I})-\mathrm{O}(27)-\mathrm{H}(22)-\mathrm{O}(8,4)$	1.62	01	2.597(5)	0.86	1.83	2.672(6)	108	97.9(2)	163	170
$\mathrm{O}(4, \mathrm{II})$	- $\mathrm{H}(23)-\mathrm{O}(28)-\mathrm{H}(24)-\mathrm{O}(14)$	I.65	$0 \cdot 95$	$2 \cdot 605(5)$	0.99	2.03	3.017(5)	99	$100 \cdot 3(2)$	175	170
$\mathrm{O}(3,10)$	$-\mathrm{H}(25)-\mathrm{O}(29)-\mathrm{H}(26)-\mathrm{O}(10,1)$	I-63	. 05	$2.656(5)$	0.99	1.74	$2 \cdot 723(5)$	118	110.9 (2)	165	175
O (10)	$-\mathrm{H}(27)-\mathrm{O}(30)-\mathrm{H}(28)-\mathrm{O}(11,1)$	1.76	0.92	2.673(6)	0.87	1-91	$2 \cdot 771$ (5)	130	121.3(2)	173	170
O(5)	$-\mathrm{H}(29)-\mathrm{O}(31)-\mathrm{H}(30)-\mathrm{O}(34)$	1.64	1.02	2.643(5)	1.01	- 1.62	2.620 (6)	121	118.1(2)	169	171
$\mathrm{O}(37)$	$-\mathrm{H}(3 \mathrm{I})-\mathrm{O}(32)-\mathrm{H}(32)-\mathrm{O}(13)$	1.80	0.82	$2.599(5)$	1.08	I. 58	$2 \cdot 640$ (5)	106	$100 \cdot 1(2)$	166	167
$\mathrm{O}(36)$	$-\mathrm{H}(33)-\mathrm{O}(33)-\mathrm{H}(34)-\mathrm{O}(13,1)$	I. 47	I. 15	2.607(6)	0.98	I.70	$2 \cdot 621$ (6)	89	95.9(2)	171	155
$\mathrm{O}(30)$	$-\mathrm{H}(35)-\mathrm{O}(34)-\mathrm{H}(36)-\mathrm{O}(9, \mathrm{I})$	$2 \cdot 47$	0.81	3.259(5)	I•19	1.93	2.999(6)	110	85.2(2)	165	147
$\mathrm{O}(\mathrm{I} 8)$	$-\mathrm{H}(37)-\mathrm{O}(35)-\mathrm{H}(38)-\mathrm{O}(13)$	$2 \cdot 21$	0.93	$3.099(6)$	0.96	$2 \cdot 10$	$3.062(6)$	103	99.5(2)	16 I	176
$\mathrm{O}(17)$	$-\mathrm{H}(39)-\mathrm{O}(36)-\mathrm{H}(40)-\mathrm{O}(6)$	1.93	1.06	2.973(6)	0.99	2.06	$3.036(5)$	126	126.5(2)	170	172
$\mathrm{O}(8)$	$-\mathrm{H}(4 \mathrm{I})-\mathrm{O}(37)-\mathrm{H}(42)-\mathrm{O}(5,2)$	1.76	0.97	2.709(5)	0.99	I.79	$2 \cdot 730(6)$	107	$123.8(2)$	164	158
$\mathrm{O}(34)$	$-\mathrm{H}(43)-\mathrm{O}(38)-\mathrm{H}(44)-\mathrm{O}(37)$	2.04	0.95	2.932(7)	0.94	I.8I	$2 \cdot 745$ (6)	92	$87.0(2)$	157	172

$\begin{array}{cccc}6 & -x & 1-y & 1-z \\ 7 & -x & 1-y & -z \\ 8 & 1-x & 1 / 2+y & 1 / 2-z\end{array}$

NiN N
ते

$m * n$

Table V. Electrostatic balance

	$\begin{aligned} & \mathrm{Mn} \\ & \mathrm{Al} \end{aligned}$	S	H-	... H	Total		$\begin{aligned} & \mathrm{Mn} \\ & \mathrm{Al} \end{aligned}$	S	H-	. H	Total
$\mathrm{O}(\mathrm{I})$	-	1.49	-	0.37	1.86	O(20)	$0 \cdot 35$	-	I. 60	-	I•95
$\mathrm{O}(2)$	-	I-49	-	0.46	I.95	$\mathrm{O}(2 \mathrm{I})$	0.34	-	I.56	-	1.90
$\mathrm{O}(3)$	-	I-53	-	0.41	I-94	$\mathrm{O}(22)$	0.52	-	I. 53	-	2.05
$\mathrm{O}(4)$	-	I-49	-	0.49	I-98	$\mathrm{O}(23)$	0.48	-	I. 55	-	2.03
$\mathrm{O}(5)$	-	I. 53	-	$0 \cdot 44$	$1 \cdot 97$	$\mathrm{O}(24)$	0.50	-	I-54	-	$2 \cdot 04$
O (6)	-	I. 50	-	$0 \cdot 58$	$2 \cdot 08$	$\mathrm{O}(25)$	0.50	-	1.54	-	$2 \cdot 04$
O(7)	-	I.46	-	$0 \cdot 50$	I.96	$\mathrm{O}(26)$	$0 \cdot 50$	-	I. 53	-	$2 \cdot 03$
O(8)	-	1.51	-	$0 \cdot 45$	I.96	$\mathrm{O}(27)$	0.50	-	1.51	-	2.01
$\mathrm{O}(9)$	-	I. 55	-	$0 \cdot 49$	$2 \cdot 04$	$\mathrm{O}(28)$	0.48	-	1.61	-	2.09
O (10)	一	I-52	-	$0 \cdot 44$	1.96	$\mathrm{O}(29)$	$0 \cdot 50$	-	$1 \cdot 56$	-	2.06
$\mathrm{O}(1 \mathrm{I})$	-	I.44	-	0.44	I.88	$\mathrm{O}(30)$	0.49	-	1.58	$0 \cdot 12$	$2 \cdot 19$
$\mathrm{O}(\mathrm{I} 2)$	-	I-49	-	$0 \cdot 40$	1.89	$\mathrm{O}(3 \mathrm{I})$	0.50	-	I.54	-	$2 \cdot 04$
$\mathrm{O}(13)$	-	1.45	-	0.61	2.06	$\mathrm{O}(32)$	0.51	-	I-52	-	2.03
$\mathrm{O}(\mathrm{I} 4)$	-	I. 55	-	0.56	$2 \cdot 11$	$\mathrm{O}(33)$	0.52	-	1-51	-	2.03
O(15)	-	1.50	-	$0 \cdot 38$	1.88	$\mathrm{O}(34)$	-	-	$1 \cdot 73$	0.39	$2 \cdot 12$
O (16)	0.39	I-50	-	-	I.89	$\mathrm{O}(35)$	-	-	I 73	0.23	I.96
O(17)	0.31	-	1.63	0.15	2.09	O(36)	-	-	1.71	0.25	1.96
O(18)	0.29	-	I.69	O.13	$2 \cdot 11$	O(37)	-	-	I 57	0.45	2.02
O(19)	$0 \cdot 32$	-	I. 65	-	I.97	O(38)	-	-	$1 \cdot 64$	0.23	1.87

Table VI. Bond distances

0 (3)	$1 \cdot 469$ (4)
O (4)	1-479 (4)
$\mathrm{S}(2)-\mathrm{O}(5)$	1.468 (4)
0 (6)	1.476 (4)
0 (7)	1.485 (4)
O (8)	1.474 (4)

$\mathrm{S}(3)-\mathrm{O}$ (9) $\mathrm{r} \cdot 468$ (4) \AA	Mn-	O (16) $2 \cdot 093$ (4) \AA	Al (2)-O (28) $\mathrm{I} \cdot 899$ (4)		
O (10) $1 \cdot 476$ (4)		O (17) 2•177 (4)		O	I.887 (4)
O (II) I-497 (4)		O (18) $2 \cdot 209$ (4)		\bigcirc) 1.894 (4)
O (12) I $4822^{(4)}$		O (19) $2 \cdot 165$ (4)		0 (31)	I.885 (4)
		O (20) 2:127 (4)		0 (32)	I.875 (4)
S (4)- O (13) $1 \cdot 484$ (4)		O (21) $2 \cdot 143$ (4)		O (33)	1.869 (4)
O (14) 1.459 (4)					
O (15) 1-470 (4)	Al (i)-	O (22) I.869 (4)	Average	$\mathrm{Mn}-\mathrm{O}$	$2.152 \AA$
O (16) $1 \cdot 472$ (4)		O (23) \times-899 (4)		Al-O	
		O (24) 1-882 (4)			
Average S-O 1.476 \&		O (25) I-884 (4)			
		$\bigcirc \mathrm{O}(26) \mathrm{I} \cdot 885$ (4)			
		O (27) I•879 (4)			

distance was observed (this oxygen is the only one linked also to Mn) unlike what was observed in some iron sulphates, e.g. in roemerite (Fanfani, Nunzi, and Zanazzi, 1970) and in coquimbite (Giacovazzo, Menchetti, and Scordari, 1970).

The electrostatic valence balance, computed according to Brown and Shannon (1973), is on the whole satisfactory, with some exceptions, e.g. $O(1)$ and $O(30)$, as already discussed in the hydrogen bonding description.

Table VII. Bond angles and edges of polyhedra

$\mathrm{O}(1)-\mathrm{S}(\mathrm{I})-\mathrm{O}(2)$	$109.5(2)^{\circ}$	$\mathrm{O}(\mathrm{I})-\mathrm{O}(2)$	$2 \cdot 417(5) \AA$	$\mathrm{O}(9)-\mathrm{S}(\mathrm{3})-\mathrm{O}(10)$	$110.4(2)^{\circ}$	$\mathrm{O}(9)-\mathrm{O}(\mathrm{ro})$	2.417 (6) \AA
$\mathrm{O}(3)$	109.2(2)	O(3)	$2 \cdot 403(6)$	O(II)	108.9(2)	$\mathrm{O}(\mathrm{II}$	$2.412(5)$
O(4)	$109.5(2)$	$\mathrm{O}(4)$	$2 \cdot 416$ (5)	O(I2)	$110 \cdot 1(2)$	$\mathrm{O}(12$	$2 \cdot 417(5)$
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{O}(3)$	$110.0(2)$	$\mathrm{O}(2)-\mathrm{O}(3)$	$2 \cdot 415(5)$	$\mathrm{O}(10)-\mathrm{S}(3)-\mathrm{O}(11)$	108.1(2)	$\mathrm{O}(10)-\mathrm{O}(11)$	$2.407(5)$
O(4)	108.3(2)	O(4)	$2 \cdot 398(5)$	$\mathrm{O}(12)$	1097 (2)	$O(12)$	$2.419(5)$
$O(3)-S(1)-\mathrm{O}(4)$	110.3(2)	$\mathrm{O}(3)-\mathrm{O}(4)$	2419 (5)	$\mathrm{O}(\mathrm{II})-\mathrm{S}(3)-\mathrm{O}(\mathrm{I} 2)$	109.7(2)	$\mathrm{O}(11)-\mathrm{O}(12)$	$2 \cdot 435(5)$
$\mathrm{O}(5)-\mathrm{S}(2)-\mathrm{O}(6)$	109.6(2)	$\mathrm{O}(5)-\mathrm{O}(6)$	$2 \cdot 406$ (5)	$\mathrm{O}(13)-\mathrm{S}(4)-\mathrm{O}(14)$	108.4(2)	$\mathrm{O}(13)-\mathrm{O}(14)$	2'387(6)
$\mathrm{O}(7)$	$108.5(2)$	O(7)	$2 \cdot 395(5)$	$\mathrm{O}(15)$	$109.3(2)$	$O(15)$	$2 \cdot 409(5)$
$\mathrm{O}(8)$	$109.5(2)$	$\mathrm{O}(8)$	$2 \cdot 402(6)$	$\mathrm{O}(\mathrm{I})$	107.3(2)	$\mathrm{O}(16)$	$2 \cdot 380(6)$
$\mathrm{O}(6)-\mathrm{S}(2)-\mathrm{O}(7)$	108.4(2)	$\mathrm{O}(6)-\mathrm{O}(7)$	$2 \cdot 401(5)$	$\mathrm{O}(14)-\mathrm{S}(4)-\mathrm{O}(15)$	$110.5(2)$	$\mathrm{O}(14)-\mathrm{O}(15)$	$2 \cdot 407(6)$
$\mathrm{O}(8)$	111.1(2)	$\mathrm{O}(8)$	$2 \cdot 432(5)$	O (16)	$110.8(2)$	$\mathrm{O}(16)$	2.412(6)
$\mathrm{O}(7)-\mathrm{S}(2)-\mathrm{O}(8)$	109.7(2)	$\mathrm{O}(7)-\mathrm{O}(8)$	$2 \cdot 420$ (5)	$\mathrm{O}(15)-\mathrm{S}(4)-\mathrm{O}(16)$	110.5(2)	$\mathrm{O}(15)-\mathrm{O}(16)$	2417(5)
$\mathrm{O}(\mathrm{I})-\mathrm{Mn}-\mathrm{O}(17)$	$85.7(1)^{\circ}$	$\mathrm{O}(16)-\mathrm{O}(17)$	$2 \cdot 905(6) \AA$	$\mathrm{O}(22)-\mathrm{Al}(1)-\mathrm{O}(23)$	$89.8(2)^{\circ}$	$\begin{aligned} & \text { Average } \mathrm{O}-\mathrm{O} \\ & \mathrm{O}(22)-\mathrm{O}(23) \end{aligned}$	$\begin{aligned} & 2.410 \AA \\ & 2.658(5) \AA \end{aligned}$
$\mathrm{O}(18)$	88.5(2)	O(18)	3.004(5)	$\mathrm{O}(24)$	90.8(2)	O(24)	$2.672(5)$
$\mathrm{O}(19)$	177.4(2)	$\mathrm{O}(20)$	3.115(5)	$\mathrm{O}(25)$	178.5(3)	$\mathrm{O}(26)$	$2.687(5)$
$\mathrm{O}(20)$	95.2(1)	$\mathrm{O}(2 \mathrm{I})$	3.033(6)	$\mathrm{O}(26)$	91.5(2)	$\mathrm{O}(27)$	2.617(5)
O(21)	91.5(2)	$\mathrm{O}(17)-\mathrm{O}(18)$	2.945 (6)	$O(27)$	88.6(2)	$\mathrm{O}(23)-\mathrm{O}(24)$	$2.683(5)$
$\mathrm{O}(17)-\mathrm{Mn}-\mathrm{O}(18)$	84.4 (1)	O(19)	3.116(5)	$\mathrm{O}(23)-\mathrm{Al}(1)-\mathrm{O}(24)$	$90 \cdot 4(2)$	$\mathrm{O}(25)$	$2.644(5)$
$\mathrm{O}(19)$	91.7(I)	$\mathrm{O}(2 \mathrm{I})$	3.246(5)	O (25)	88.7(2)	$\mathrm{O}(27)$	2.686(5)
$\mathrm{O}(20)$	172.9(2)	$\mathrm{O}(18)-\mathrm{O}(19)$	3.135(6)	O(26)	178-7(3)	$\mathrm{O}(24)-\mathrm{O}(25)$	$2 \cdot 644(5)$
$\mathrm{O}(21)$	97-4(2)	$O(20)$	3.028(5)	O(27)	90.6(2)	$\mathrm{O}(26)$	$2 \cdot 645(6)$
$\mathrm{O}(18)-\mathrm{Mn}-\mathrm{O}(19)$	$91.6(1)$	$\mathrm{O}(19)-\mathrm{O}(20)$	2.965 (6)	$\mathrm{O}(24)-\mathrm{Al}(1)-\mathrm{O}(25)$	89.2(2)	$\mathrm{O}(25) \mathrm{O}(26)$	$2 \cdot 666(5)$
O(20)	88.6(1)	$\mathrm{O}(21)$	3.007(6)	O(26)	$89 \cdot 2(2)$	O(27)	$2.692(5)$
O(21)	$178.2(3)$	$\mathrm{O}(20)-\mathrm{O}(2 \mathrm{I})$	$3 \cdot 010(6)$	O(27)	178.8(3)	$\mathrm{O}(26)-\mathrm{O}(27)$	$2 \cdot 656$ (5)
$\mathrm{O}(19)-\mathrm{Mn}-\mathrm{O}$ (20)	87.4(1)			$\mathrm{O}(25)-\mathrm{Al}(1)-\mathrm{O}(26)$	90.1(2)		
O(21)	$88.5(2)$	Average O-O	$3.042 \AA$	$\mathrm{O}(27)$	91.4(2)		
$\mathrm{O}(20)-\mathrm{Mn}-\mathrm{O}(21)$	89.7(2)			$\mathrm{O}(26)-\mathrm{Al}(1)-\mathrm{O}(27)$	$89 \cdot 8(2)$		
$\mathrm{O}(28)-\mathrm{Al}(2)-\mathrm{O}(29)$	$89.5(2)^{\circ}$	$\mathrm{O}(28)-\mathrm{O}(29)$	$2.664(5) \AA$	$\mathrm{O}(30)-\mathrm{Al}(2)-\mathrm{O}(31)$	$89.1(2)^{3}$	$\mathrm{O}(31)-\mathrm{O}(32)$	$2 \cdot 685(5)$ A
$\mathrm{O}(30)$	$90.8(2)$	O(30)	2.699(5)	O(32)	89.4(2)	$\mathrm{O}(33)$	$2 \cdot 692$ (5)
$\mathrm{O}(31)$	179.6(3)	O(32)	$2.648(5)$	O(33)	179.3(3)	$\mathrm{O}(32)-\mathrm{O}(33)$	$2 \cdot 660$ (5)
$\mathrm{O}(32)$	$89.1(2)$	O(33)	2.628(5)	$\mathrm{O}(31)-\mathrm{Al}(2)-\mathrm{O}(32)$	91-2(2)		
O(33)	88.5(2)	$\mathrm{O}(29)-\mathrm{O}(30)$	$2 \cdot 652(5)$	O(33)	91.7(2)	Average $\mathrm{O}-\mathrm{O}$	2.664 A
$\mathrm{O}(29)-\mathrm{Al}(2)-\mathrm{O}(30)$	89.1(2)	$\mathrm{O}(31)$	$2.671(5)$	$\mathrm{O}(32)-\mathrm{Al}(2)-\mathrm{O}(33)$	90.6(2)		
$\mathrm{O}(31)$	90.2(2)	$\mathrm{O}(33)$	$2 \cdot 676(5)$				
$\mathrm{O}(32)$	$178.0(2)$	$\mathrm{O}(30)-\mathrm{O}(31)$	$2 \cdot 649$ (5)				
$\mathrm{O}(33)$	90.9(2)	O(32)	$2 \cdot 652(5)$				

REFERENCES

Bandy (M. C.), 1938. Amer. Min. 23, 724-9.
Brown (I. D.) and Shannon (R. D.), 1973. Acta Cryst. A 29, $266-82$.
Cromer (D. T.) and Liberman (D.), i970. Journ. Chem. Phys. 53, 189 I-8.

- and Waber (J. T.), 1965. Acta Cryst. 18, 104-9.

Fanfani (L.), Nunzi (A.), and Zanazzi (P. F.), i970. Amer. Min. 55, 78-89.
Germain (G.), Main (P.), and Woolfson (M. M.), i97I. Acta Cryst. A 27, 368-76.
Giacovazzo (C.), Menchetti (S.), and Scordari (F.), 1970. Accad. Naz. Lincei Rend. Sc. fis. mat. nat. 49, 129-40.
Gordon (S. G.), 1942. Notulae Naturae, Acad. Sci. Philadelphia, 101, I-9.
Hamilton (W. C.), 1959. Acta Cryst. 12, 609-I0.
International Tables for X-Ray Crystallography, 1962, 3, 258 -74.
JCPDS (Joint Committee on Powder Diffraction Standards), 1971. Inorganic Index to the Powder Diffraction File. Pennsylvania.
Meixner (H.) and Pillewizer (W.), 1937. Zentr. Min., Abt. A, 263-70.
Menchetti (S.) and Sabelli (C.), 1973. Acta Cryst. B 29, 2541 -8.
-_- 1974. Tschermaks Min. Petr. Mitt. 21, 164-78.
Palache (C.), Berman (H.), and Frondel (C.), 195I. Dana's System of Mineralogy, 2, 522-9, New York (Wiley).
Stewart (R. F.), Davidson (E. R.), and Simpson (W. T.), 1965. Journ. Chem. Phys. 42, 3175-87.
[Manuscript received 13 May 1975]

