Högbomite of unusual composition from Reedy Creek, South Australia

N. S. MANCKTELOW¹

Department of Geology and Mineralogy, University of Adelaide, Adelaide 5000, Australia

ABSTRACT. Högbomite from Reedy Creek, South Australia, is of a composition outside the previously reported range. It contains less Ti and Mg and more Al and total Fe, with a total Fe/(total Fe + Mg) value between 0.69 and 0.72. The högbomite occurs in unusual cordieritesillimanite aggregates containing minor magnetite, ilmenite, hematite, corundum, and hercynite.

HÖGBOMITE occurs in aluminous segregations within laminated metaarkoses of the Cambrian Kanmantoo Group in Reedy Creek, 70 km east of Adelaide, South Australia (fig. 1). The location lies within the highest-grade migmatite zone of the regional metamorphism which affected the Adelaide Fold Belt (White, 1966; Mancktelow, 1979). Mineral assemblages within this zone suggest peak metamorphic conditions of approximately 3.7 kb and 640 $^{\circ}$ C (Mancktelow, 1979). Aluminous segregations from this locality were first described by Sando (1957) and later by Whitehead (1975), but högbomite was not recognized.

Assemblage. The unusual aluminous segregations consist of a groundmass of albite (An_{04}) , cordierite, quartz, phlogopite, magnetite, ilmenitehematite, minor retrogressive chlorite, and rare retrogressive andalusite and staurolite (Table I). Ilmenite and hematite occur only as composite grains showing exsolution of one component in the other. Through this matrix are scattered occasional large cordierite aggregates (fig. 2), which may once have been single crystals but now form an interlocking mosaic of small cordierite grains. These aggregates have a characteristic geometry, with a

FIGS. 1 and 2. FIG. 1 (*left*). Location diagram. FIG. 2 (*right*). Photomicrograph of a typical cordierite-rich aggregate. 1-external matrix; 2-plagioclase-rich corona; 3-vermicular intergrowth at contact between plagioclase of zone 2 and cordierite of zone 4; 4-inclusion-poor cordierite rim; 5-inclusion-rich zone; 6-core of cordierite sieved with oriented sillimanite prisms.

¹ Present address: Geologisches Institut, ETH-Zentrum, CH-8092 Zürich, Switzerland.

central core and succeeding diffuse rings. The core consists of cordierite sieved with oriented coarse sillimanite prisms; the sillimanite is largely in optical continuity and may occupy more than 60% of this central area (figs. 2, 3). This core is

 TABLE I. Electron-microprobe analyses of associated minerals from the högbomite-bearing assemblage

	Cordierite		Phlogopite		Plagio	Ilmenite		
SiO ₂	47.78		37.35		65.57			_
TiO ₂	_		2.00				49.48	
$Al_2 \bar{O}_3$	34.35		17.27		21.74		_	
FeO	4.04		11.50				49.05	
MgO	11.28		17.18		_		0.36	
MnO	0.08		—		_		0.54	
CaO	—				0.92			
Na ₂ O	0.24		0.43		11.21		-	
K ₂ O	-		8.74		0.05			
Total	97.77		94.47		99.49		99.43	
0	18	0	20	0	8	0	3	
Si	4.862	OH	4	Si	2.890	Fe ³⁺	0.041	
Al	1.138	Si	5.493	Al	1.130	Ti	0.959	
Al	2,984	Al	2.507	Na	0.958	Mg	0.014	
Fe ³⁺	0.016	Al	0.488	Ca	0.043	Fe ²⁺	1.016	
Mg	1.712	Ti	0.221	Κ	0.003	Mn	0.012	
Fe ²⁺	0.328	Fe	1.415					
Mn	0.007	Mg	3.769					
Na	0.048	Na	0.122					
		К	1.640					
	Mag	Magnetite		Corundum		Hercynite		te
SiO ₂	0.15				0.13		0.09	
Al ₂ O ₃	0.38		99.30		59.64		59.58	
Cr_2O_3					0.20		0.11	
FeO	90.77		1.10		28.43		30.13	
MgO	-		_		7.54		7.44	
MnO 7-0	_				0.17		0.22	
NIO	0.11				3.49		1.09	
NO	0.11		_		0.18		0.14	
Total	91.41		100.40		99.78		99.38	
o :	32	0	3	0	32	0	32	
Si	0.064	Al	1.990	Si	0.029	Si	0.021	
Al	0.184	Fe ²⁺	0.016	Al	15.640	Al	15.663	
Fe ³⁺	15.752			Cr	0.035	Cr	0.019	
Fe ²⁺	7.728			Fe ³⁺	0.296	Fe ³⁺	0.298	
Ni	0.040			Mg	2.501	Mg	2.473	
				Fe ²⁺	4.994	Fe ²⁺	5.321	
				Zn	0.574	Zn	0.278	
				Mn	0.032	Mn	0.042	
				N1	0.031	Ni	0.025	

Each analysis is representative of 8-10 grain microprobe analyses, except for the opaques where only two grains of each phase were analysed. Compositional variation of the component minerals is slight except for Zn in hercynite. Two hercynite analyses covering the range of Zn values are given. There is no significant compositional difference between cordierite grains from the matrix and those from the larger aggregates. Corundum, hercynite, and högbomite only occur within the cordierite aggregates. surrounded by a zone rich in magnetite, ilmenitehematite, corundum, hercynite, högbomite, and occasional phlogopite inclusions within the cordierite, which in turn is surrounded by an outer, inclusion-poor rim of cordierite. These large aggregates are surrounded by a plagioclase-rich corona, without quartz, and with very little phlogopite compared with the general matrix. Vermicular intergrowths of cordierite and plagioclase often occur at the boundary of the cordierite aggregates (fig. 4). The origin of these aggregates is still unresolved.

Högbomite occurs as medium- to light-brown grains, both as separate inclusions within the cordierite and intergrown with green hercynite, magnetite, and ilmenite-hematite. No clear replacement relationship is discernible between högbomite and hercynite (cf. McKie, 1963; Zakrzewski, 1977; Teale, 1980), hercynite often abutting magnetite, ilmenite-hematite, and corundum without any intervening högbomite. Högbomite commonly also occurs as isolated grains, and appears to be a stable member of this upper amphibolite-facies mineral assemblage, with no evidence of breakdown or alteration.

Composition. McKie (1963) considered the range of högbomite compositions to be $R_{1.0-1.6}^{2+}$ Ti_{0.2-0.4} Zakrzewski (1977) $R_{3,7-4,3}^{3+}O_{7,6-8,0}^{2-}OH_{0-0,4}^{-}$ demonstrated from the infra-red spectra of Liganga högbomites that they contain no OH^- or H_2O groups. Of all the complete analyses of högbomite which have been published (see summaries in Wilson, 1977, and McKie, 1963, and the recent analyses of Teale, 1980), only those of Nel (1949) report any structural H₂O, and Nel considered that this may have been due to chlorite contamination. The Reedy Creek högbomite has a composition outside this range of previously published analyses (Table II). Ti is lower (0.084-0.172), Al higher (3.920-4.039), Mg lower (0.482-0.534), and total Fe higher (1.189-1.262). The ratio of total Fe to total Fe + Mg varies between 0.69 and 0.72, higher than the range of previous analyses (0.020-0.62). Analysis by electron microprobe does not allow distinction between Fe²⁺ and Fe³⁺ or the determination of H_2O , and the small grain size (< 70 microns), and very limited quantity of Reedy Creek högbomite precludes successful separation for chemical analysis. Zakrzewski (1977) proposed a formula for högbomite analogous to that of nigerite, namely R_{2-2x}^{2+} Ti_x R_4^{3+} O₈, and assumed the correctness of this formula to divide the total Fe from his microprobe analyses into Fe²⁺ and Fe³⁺ components. The analyses for Reedy Creek högbomite would fit this formula moderately well (Table II), but because of the high values for Al^{3+} , the predicted Fe³⁺ values seem unrealistically low

FIGS. 3 and 4. FIG. 3 (*left*). Photomicrograph of the cordierite-rich aggregate of fig. 2 at a higher magnification showing the zone rich in inclusions of opaque magnetite, ilmenite, and hematite, and translucent hereynite and högbomite. FIG. 4 (*right*). Photomicrograph of the vermicular intergrowth between cordierite and plagioclase developed at the rim of the cordierite-rich aggregates.

SiO ₂			0.09	0.13	_	0.13	0.14	0.11	Mean 0.08
TiO ₂	2.03	2.93	4.11	2.80	3.58	2.23	3.85	3.38	3.11
Al_2O_3	62.38	61.76	60.04	61.49	60.01	62.64	61.24	62.04	61.45
Cr_2O_3	0.10		_	0.14	0.09	0.06	_	0.10	0.06
FeO (tot.)	26.64	26.77	25.83	25.81	26.45	27.80	25.51	25.61	26.30
MnO	0.14	0.19	0.12	0.09	0.16	0.17	0.15	0.19	0.15
NiO	0.10	0.13			0.15	_	0.17	0.10	0.08
MgO	6.29	6.39	5.80	6.45	6.46	6.16	5.67	6.58	6.23
ZnO	0.34	0.89	0.93	0.76	0.83	0.34	0.65	0.44	0.65
Total	98.09	99.19	97.03	97.78	97.84	99.65	97.44	98.68	98.21
Si			0.005	0.007	_	0.007	0.008	0.006	0.004
Ti	0.084	0.120	0.172	0.116	0.149	0.091	0.160	0.142	0.129
Al	4.039	3.972	3.941	3.992	3.920	4.009	3.985	3.987	3.981
Cr	0.004		—	0.006	0.004	0.003		0.004	0.003
ΣFe^{2+}	1.224	1.222	1.203	1.189	1.226	1.262	1.178	1.165	1.209
Mn	0.006	0.009	0.006	0.004	0.008	0.008	0.007	0.009	0.007
Zn	0.014	0.036	0.038	0.031	0.034	0.014	0.026	0.018	0.026
Ni	0.005	0.006	—		0.006	-	0.007	0.005	0.004
Mg	0.515	0.519	0.482	0.530	0.534	0.498	0.466	0.534	0.510
ΣR	5.891	5.884	5.851	5.878	5.885	5.897	5.839	5.861	5.872
ΣR^{3+}	4.043	3.972	3.941	3,998	3.924	4.012	3.985	3.982	3.982
$\Sigma R^{2+} + 2 T i^{4+}$	1.932	2.004	2.014	1.984	2.030	1.964	1.989	1.997	1.989
$\Sigma R^{3+} + \Sigma R^{2+} + 2 T i^{4+}$	5.975	5.976	5.955	5.982	5.954	5.976	5.974	5.979	5.971
$\Sigma Fe^{2+}/(\Sigma Fe^{2+} + Mg^{2+})$	0.70	0.70	0.71	0.69	0.70	0.72	0.72	0.69	0.70

TABLE II. Electron-microprobe analyses of högbomites from Reedy Creek

Number of cations calculated on the basis of eight oxygens. The final column is the mean of the eight analyses. in comparison with previously published analyses in which Fe^{2+} and Fe^{3+} were determined independently (see Wilson, 1977). Until further complete analyses are available for högbomite, the applicability of the structural formula proposed by Zakrzewski (1977) remains unproven.

Conclusion. The microprobe analyses of högbomite from Reedy Creek extend the range of known compositions to considerably higher values of total Fe/(total Fe+Mg). The discovery of högbomite of this composition as a stable component of an upper amphibolite-facies mineral assemblage is of some significance in the context of Moore's (1971) suggestion that iron högbomite is unstable and dissociates to form corundum and ilmenite.

Acknowledgements. Thanks are extended to Graham Teale and Alan Purvis for fruitful discussion, to Macquarie University Department of Earth Sciences for the use of their electron-microprobe facilities, and in particular to Greg Poole for his help with microprobe analysis. This work was undertaken while the author was in receipt of a Commonwealth Postgraduate Research Award at the University of Adelaide, South Australia.

REFERENCES

- McKie, D. (1963). Mineral. Mag. 33, 563-80.
- Mancktelow, N. S. (1979). Ph.D. thesis, University of Adelaide.
- Moore, A. C. (1971). J. Geol. Soc. Aust. 17, 227-9.
- Nel, H. J. (1949). S. Afr. Geol. Surv. Mem. 43, 1-7.
- Sando, M. (1957). M.Sc. thesis, University of Adelaide.
- Teale, G. S. (1980). Mineral. Mag. 43, 575-7.
- White, A. J. R. (1966). Chem. Geol. 1, 165-200.
- Whitehead, B. R. (1975). B.Sc. Hons. thesis, University of Adelaide.
- Wilson, A. F. (1977). Mineral. Mag. 41, 337-40.
- Zakrzewski, M. A. (1977). Neues Jahrb. Mineral. Monatsh. 373-80.
- [Manuscript received 27 May 1980; revised 22 September 1980]