The partial molar volume of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ in multicomponent silicate liquids and the pressure dependence of oxygen fugacity in magmas

X. Mo,* I. S. E. Carmichael, M. Rivers, and J. Stebbins
Lawrence Berkeley Laboratory, Department of Geology and Geophysics, University of California, Berkeley, California 94720 USA

abstract. Density measurements of eight silicate liquids containing substantial amounts of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ have been made over a range of $250^{\circ} \mathrm{C}$. These have been combined with published density measurements on multicomponent silicate liquids to yield (by multiple regression) partial molar volumes of $\mathrm{SiO}_{2}, \mathrm{TiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Fe}_{2} \mathrm{O}_{3}$, $\mathrm{FeO}, \mathrm{MgO}, \mathrm{CaO}, \mathrm{Na}_{2} \mathrm{O}$, and $\mathrm{K}_{2} \mathrm{O}$. The data on $\mathrm{Fe}_{2} \mathrm{O}_{3^{-}}$ liquids are neither precise nor abundant enough to show a compositional dependence of $\vec{V}_{\mathrm{Fe}_{2} \mathrm{O}_{3} \text {. In a liquid of }}^{\mathrm{Ji}}$ constant composition and temperature, the pressure dependence of the oxygen fugacity is given by

$$
R T \int_{1}^{P} \mathrm{~d} \ln f_{\mathrm{O}_{2}}=\int_{1}^{P}\left(2 \bar{V}_{\mathrm{Fe}_{2} \mathrm{O}_{3}}^{\mathrm{iqq}}-4 \vec{V}_{\mathrm{FeO}}^{\mathrm{liq}}\right) \mathrm{d} P
$$

which, if ΔV is independent of pressure, necessitates an increase in $f_{\mathrm{O}_{2}}$ with increasing pressure of about $1 \log _{10}$ unit for 10 kbars .

Combining an equation relating oxygen fugacity to composition, T, and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ at 1 bar (Sack et al., 1980) with the results for partial molar volumes, the oxygen fugacity of any magma can be calculated as a function of P and T. If basic magmas have their $\mathrm{Fe}_{2} \mathrm{O}_{3} / \mathrm{FeO}$ set in the source regions, and ascend isochemically, then the calculated oxygen fugacities in the mantle increase as pressure increases and silica activity decreases. A $P-T$ grid has been constructed to show the calculated oxygen fugacities in a source region which has equilibrated with some common lava types, based on their FeO and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ contents.

Density measurements of a variety of silicate liquids were used by Bottinga and Weill (1970) to derive partial molar volumes of oxide components and their temperature dependence. Since then ternary and multicomponent silicate liquids containing TiO_{2} have been measured and estimates of the partial molar volumes of the components SiO_{2}, $\mathrm{TiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{FeO}, \mathrm{MgO}, \mathrm{CaO}, \mathrm{Na}_{2} \mathrm{O}$, and $\mathrm{K}_{2} \mathrm{O}$ were given by Nelson and Carmichael (1979). Although many of the density measurements of

[^0]FeO-containing systems report small amounts of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ (e.g. Henderson, 1964; Shiraishi et al., 1978) the concentrations were so small that Bottinga and Weill constrained its volume in silicate liquids by analogy to that of crystalline $\mathrm{Fe}_{2} \mathrm{O}_{3}$ (hematite).

This paper reports on the density measurements of $\mathrm{Fe}_{2} \mathrm{O}_{3}$-containing liquids, and gives estimates of the partial molar volumes of the nine oxide components most abundant in natural silicate liquids. The effect of pressure on oxygen fugacity in an isochemical silicate liquid can be calculated by making simple assumptions about the partial molar oxide compressibilities, and is used to illustrate the conditions of equilibration of various basic magmas with a mineral assemblage in the mantle.

Experimental techniques. The apparatus used for the density determination is similar to that described by Bockris et al. (1956). It consists of a $\mathrm{Pt} / \mathrm{Rh}$-wound resistance furnace and temperature controller that operates in the range of 500 to $1600^{\circ} \mathrm{C}$. The furnace is mounted on a hydraulic jack so that it can be raised and lowered, with the distance measured on a micrometer dial gauge. A concrete platform mounted above the furnace supports an electronic balance that has a precision of $\pm 0.001 \mathrm{~g}$. The silicate liquid sample, in a platinum crucible, is placed in the furnace whose temperature is measured with a $\mathrm{Pt} / \mathrm{Pt} 10 \% \mathrm{Rh}$ thermocouple calibrated periodically at the melting points of Au and Pd . A platinum bob, the volume of which is known at room temperature, is suspended from the balance in the furnace atmosphere. The furnace and crucible containing the silicate liquid are raised until the tip of the bob makes contact with the surface of the liquid. The contact causes a deflection on the balance and the point at which this occurs on the micrometer gauge is noted. Then the crucible and liquid are raised a constant distance $(2.0 \mathrm{~cm})$ to submerge the Pt bob, and the weight of the bob is read on the balance. The thermal gradient is less than 3° in the region of the furnace occupied by the crucible. Measurements were made in air every 50° on both heating and cooling, and each composition was allowed to equilibrate for half an
hour at each temperature before measurement. The effect of surface tension on the emergent stem of the bob was eliminated by making runs on each liquid composition using two bobs with different volumes but with the same stem diameter. Density was then determined by first fitting a least squares line to the buoyancy-temperature data on the large bob and then solving for density at the measured temperature of the small bob. The procedure was then inverted, first fitting a least squares line to the small bob buoyancy as a function of temperature and then solving for density at the measured temperature of the large bob.

The formula from which we calculated the density is:

$$
\rho=\frac{B_{2}(T)-B_{1}(T)}{V_{2}(T)-V_{1}(T)}
$$

where
$\rho=$ density of the liquid at the measured temperature (T),
$B_{2}(T)=$ the measured buoyancy of one bob at temperature T,
$B_{1}(T)=$ the buoyancy of the other bob calculated from its equation at temperature T,
$V_{2}(T), V_{1}(T)=$ the known submerged volume of bob nos. 1 and 2, respectively, at the temperature of measurement.
The value of $V(T)$ is given by:

$$
V(T)=v \cdot W
$$

where
W is the weight of the submerged Pt bob measured at room temperature by weighing in air, correcting to vacuum, and subtracting the weight of the nonsubmerged stem of the bob.
v is the specific volume of Pt ,
$v=4.64056 \times 10^{-2}+6.0757 \times 10^{-7} T(\mathrm{~K})+4.675 \times$ $10^{-10} T^{2}(\mathrm{~K}) \mathrm{cm}^{3} / \mathrm{g}$, where the thermal expansion of pure Pt is taken from Waseda et al. (1975) and Edwards et al. (1951).
The effect of bubbles in the liquid or adhering to the Pt bob could be detected by deviations from a smooth plot of buoyancy against temperature.
The samples were prepared either from ground Hawaiian basalt, or by mixing reagent grade $\mathrm{SiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}$, $\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{MgO}, \mathrm{CaCO}_{3}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, and $\mathrm{Na}_{2} \mathrm{SiO}_{3}$. $9 \mathrm{H}_{2} \mathrm{O}$. The powders were weighed in the proportions required and then mixed in glass jars. For all synthetic compositions the mixed powders were then fused in a large Pt crucible at $1450-1600^{\circ} \mathrm{C}$ in a glass-making furnace for 7-8 hours until a bubble-free liquid was obtained. It was then quenched to a glass and ground into powder. The same procedures were repeated twice to get homogeneous glass powder. The glass powder was then placed in the smaller Pt crucibles and heated in the furnace until all bubbles had disappeared. After determining the density of each liquid by the method described above, the liquids were poured onto a graphite slab, and later analysed by wet chemical methods. Rapid cooling and the slow rate of diffusion of oxygen prevented reaction between the liquid and graphite during quench.

The submerged stem of one bob was analysed by electron microprobe and was found to contain less than $0.2 \% \mathrm{Fe}$. This contamination has a negligible effect on the bob density.

Results. Wet chemical analyses of the investigated liquids are given in Table I. All but sample 009 readily quenched to a glass in air, and each was crushed for analysis after completion of the density measurements. (Sample 009 contained abundant hematite formed during quench.) To avoid possible oxidation of the powdered glass during sample preparation, small chips of the glasses were used for replicate determinations of FeO using the colorimetric technique described by Wilson (1960). The $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and FeO concentrations reported in Table I are taken to represent equilibration in air at the temperature of the quench. That this is reasonable can be seen by comparing the analysed $\mathrm{Fe}_{2} \mathrm{O}_{3} / \mathrm{FeO}$ (Table I) with the values predicted using Sack et al. (1980)'s equation 9. These are shown in Table I, together with the temperature predicted from the analysed $\mathrm{Fe}_{2} \mathrm{O}_{3} /$ FeO and the known $f_{\mathrm{O}_{2}}$ (air). Generally the agreement between the calculated temperatures, or $\mathrm{Fe}_{2} \mathrm{O}_{3} / \mathrm{FeO}$, and those measured is good. Strangely basalt 004 has $\mathrm{Fe}_{2} \mathrm{O}_{3} / \mathrm{FeO}$ which departs significantly from that predicted, for which there is no obvious explanation. The equilibration of a basaltic liquid in air reported by Kennedy (1948) was the only source of data at high oxygen fugacities used by Sack et al. (1980); the results on 004 are clearly inconsistent with those at 1709 K . Composition 002 was made up as $\mathrm{NaFe}^{3+} \mathrm{Si}_{2} \mathrm{O}_{6}$ but after equilibration in air at 1724 K contains significant amounts of FeO , which is at odds with the Mossbauer spectra of Mysen et al. (1980) for liquids of similar composition.

Given the values of $\mathrm{Fe}_{2} \mathrm{O}_{3} / \mathrm{FeO}$ for the glasses at the known quench temperature (only 009 is uncertain in this respect), then the value of this ratio in equilibrium with air ($f_{\mathrm{O}_{2}}=0.21$) at any other temperature can be calculated using the temperature dependence relationship of Sack et al. (1980)'s equation 9; the ratios for each composition were calculated at $1523,1573,1673,1773$, and 1873 K , the temperatures at which the values of the partial molar volumes were regressed. There are also liquids reported which contain small amounts of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ (usually less than 2 mole \%) but no attempt was made to calculate its variation with temperature, for in general neither the temperature of the quench nor the oxygen fugacity were known. The published concentration of $\mathrm{Fe}_{2} \mathrm{O}_{3}$, after correction to FeO for the small amount of Fe that occurred in the cooled silicate composition, was therefore taken as constant.

Table I. Analyses of liquid compositions (wt. \%)

	002	003	003 b	004	005	006	009	010	FS-2†
SiO_{2}	52.26	32.84	29.05	49.61	44.77	40.08	41.51	32.41	36.50
TiO_{2}	-	0.64	nil	3.26	2.97	2.68	0.11	nil	-
$\mathrm{Al}_{2} \mathrm{O}_{3}$	-	2.69	-	13.40	12.20	10.77	2.44	-	0.67
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	27.45	28.78	34.40	8.62	15.67	20.96	23.72	28.46	2.51
FeO	6.62	4.23	4.14	5.05	6.64	9.01	9.09	3.22	60.02
MnO	-	0.05	-	0.19	0.17	0.15	0.04	-	-
MgO	-	1.00	-	5.94	5.36	4.75	17.81	-	-
CaO	-	28.43	31.63	9.93	8.90	8.06	0.27	35.27	-
$\mathrm{Na}_{2} \mathrm{O}$	13.46	0.42	-	2.63	2.25	2.03	4.60	-	-
$\mathrm{K}_{2} \mathrm{O}$	0.02	0.09	-	0.67	0.61	0.55	0.01	-	-
$\mathrm{P}_{2} \mathrm{O}_{5}$	-	0.04	-	0.32	0.29	0.26	0.06	-	-
Total	99.81	99.21	99.22	99.62	99.83	99.30	99.66	99.36	99.70
Quench									
T, K	1724	1615	1573	1709	1692	1673	1795	1577	1494
Predicted from $\mathrm{Fe}_{2} \mathrm{O}_{3} / \mathrm{FeO}$ (Sack et al., 1980)									
T	1764	1621	1600	1798	1687	1664	-	1632	-
$\mathrm{X}_{\mathrm{Fe}_{2} \mathrm{O}_{3}}$									
$\mathrm{X}_{\mathrm{FeO}}$	1.87	3.06	3.74	0.77	1.06	1.05	1.17*	3.98	0.019
Predicted from T of quench (Sack et al., 1980)									
$\underline{\mathrm{X}_{\mathrm{Fe}_{2} \mathrm{O}_{3}}}$	2.22	3.10	4.32	1.13	1.04	1.00	-	5.27	-
$\mathrm{X}_{\mathrm{FeO}}$	± 0.13	± 0.15	± 0.26	± 0.07	± 0.07	± 0.06		± 0.32	

The FeO content was determined in the glassy material after quenching in air at the indicated temperatures.

* Did not quench to a glass.
\dagger Run in Fe crucible at low, but unmeasured $f_{\mathrm{O}_{2}} . \log _{10} f_{\mathrm{O}_{2}}$ predicted from composition and quench $T=-9.50 . \mathrm{Al}_{2} \mathrm{O}_{3}$ content is due to contamination after density was measured.

Wet chemical analyses by I. S. E. Carmichael and J. Hampel.

Equations of specific volume as a function of temperature for each of our compositions are presented in Table II, and the density data for each

Table II. Specific volumes of compositions studied

$$
V=a+b T(\mathrm{~K})
$$

Comp.	a cc / g	$b \times 10^{5}$ $\mathrm{cc} / \mathrm{gK}$	Temp. range $\left({ }^{\circ} \mathrm{C}\right)$
002	0.3563	1.9255	$1360-1565$
003	0.2985	2.5508	$1230-1500$
003 B	0.2987	1.5526	$1285-1530$
004	0.3553	1.4090	$1310-1550$
005	0.3184	2.6066	$1350-1560$
006	0.3021	2.8490	$1395-1560$
009	0.3307	1.2392	$1430-1580$
010	0.2942	2.3664	$1275-1530$
FS-2	0.2455	2.4812	$1221-1409$

are shown in fig. 1. Several compositions were redetermined after an interval of several weeks, and in all cases the greatest deviation between successive results is 0.5%, with an average reproducibility of 0.3%. Generally the less viscous liquids are those with the most precise density measurements, as is well illustrated by Nelson and Carmichael (1979).

There seems to be a general consensus among investigators reporting liquid densities that individual experimental reproducibility is of the order of 0.5%, or better, although replicate experiments by Tomlinson et al. (1958) at $1700^{\circ} \mathrm{C}$ on liquid $0.525 \mathrm{CaO}-0.475 \mathrm{SiO}_{2}$ are just within 1.1%. A cursory perusal of density measurements shows that the disagreement between investigators measuring the same composition may be much larger. For example Nelson and Carmichael (1979)'s density for $0.5 \mathrm{Na}_{2} \mathrm{O}-0.5 \mathrm{SiO}_{2}$ is 1.6% larger at $1400^{\circ} \mathrm{C}$ than Bockris et al.'s (1956). The agreement is even worse for liquid $\mathrm{Fe}_{2} \mathrm{SiO}_{4}$ as the measurements of Shiraishi et al. (1978) differ by more than 3% at $1300^{\circ} \mathrm{C}$ and

Fig. 1. Density determinations as a function of temperature for the eight liquids. Error brackets represent $\pm 1 \%$.
$1400^{\circ} \mathrm{C}$ from those of Lee and Gaskell (1974). As there is no a priori reason to accept one set of results for FeO -rich liquids in preference to another, we have measured the density of a liquid with $60 \% \mathrm{FeO}$ (FS-2, Table II) over the range 1494-1682 K. Our results are given in Table II and are in close agreement with those of Shiraishi et al. (1978); accordingly we have ignored the data of Lee and Gaskell (1974) in our subsequent treatment.

As Askay and Pask (1979) have demonstrated that liquid volumes in the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$ system are not linear functions of composition, then multicomponent liquids must strictly also show a non-linear relationship between volume and composition. However, the capacity to demonstrate this will depend on highly precise measurements if the compositional dependence is small. Although the variation between investigators may be as large as 3%, it is typically in the $1-2 \%$ range. Clearly if the compositional dependence of volume in multicomponent liquids is such that it contributes $1-2 \%$ of the whole, then it will become obscured by the experimental uncertainty.

We have chosen to take the measurements of density on a variety of liquids, some 2-component, but mainly 3 - or more, to test whether or not the volume of each can be represented as a linear function of composition within an overall precision for the whole data set of about $1-2 \%$.

The partial molar volumes of the oxide components in these silicate liquids have been calculated from the relationship

$$
V=\sum_{\mathrm{i}=1} \bar{V}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}
$$

where V is the volume of a gram formula weight of the silicate liquid. For our samples, V was obtained by multiplying the specific volumes (Table II) by the respective gram formula weight, which changes slightly as $\mathrm{Fe}_{2} \mathrm{O}_{3} / \mathrm{FeO}$ changes with temperature in equilibrium with air. \bar{V}_{i} is the partial volume of component i , and X_{i} is the mole fraction of i. By combining the data of Tables I and II* at five different temperatures with published data (Barrett and Thomas, 1959; Bockris et al., 1956; Henderson, 1964; Nelson and Carmichael, 1979; Riebling, 1964; 1966; Shartsis et al., 1952; Shiraishi et al., 1978) at the same temperatures, values of $\overline{V_{i}}$ for nine oxide components were calculated at each temperature using the Statistical Package for the Social Sciences multiple linear regression program. The regressed values of $\overline{V_{i}}$, together with the respective standard errors, are given in Table III at these temperatures. At 1573 K there are 129 sets

[^1]Table III. Partial molar volumes of oxide components in silicate liquids (cc/mole)

	1523 K	1573 K	1673 K	1773 K	1873 K
SiO_{2}	$27.07(0.14)$	$27.04(0.14)$	$27.01(0.14)$	$26.99(0.18)$	$27.01(0.23)$
TiO_{2}	$21.67(0.83)$	$22.00(0.79)$	$22.64(0.83)$	$23.23(1.02)$	$23.79(1.29)$
$\mathrm{Al}_{2} \mathrm{O}_{3}$	$35.81(0.35)$	$36.09(0.33)$	$36.64(0.35)$	$37.18(0.43)$	$37.70(0.55)$
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	$42.86(1.07)$	$43.16(1.06)$	$43.89(1.23)$	$44.37(1.70)$	$44.68(2.52)$
FeO	$13.28(0.20)$	$13.44(0.19)$	$13.73(0.20)$	$14.27(0.27)$	$14.81(0.36)$
MgO	$11.25(0.33)$	$11.32(0.31)$	$11.46(0.32)$	$11.57(0.40)$	$11.62(0.51)$
CaO	$15.38(0.21)$	$15.70(0.20)$	$16.32(0.21)$	$16.96(0.27)$	$17.57(0.34)$
$\mathrm{Na}_{2} \mathrm{O}$	$27.74(0.24)$	$28.10(0.23)$	$28.80(0.24)$	$29.48(0.29)$	$30.10(0.37)$
$\mathrm{K}_{2} \mathrm{O}$	$44.18(0.52)$	$44.79(0.50)$	$45.97(0.52)$	$47.12(0.64)$	$48.18(0.82)$

Numbers in parentheses represent 1 standard error.
of data, with a standard deviation of 0.349 about the regression surface, equivalent to a coefficient of variability of $1.4 \%\left(\mathrm{r}^{2}=0.9998\right)$, but at 1873 K , the 124 data points are less precisely fitted $\left(\mathrm{r}^{2}=\right.$ 0.9995) with a standard deviation of 0.574 , or a coefficient of variability of 2.2%.

The magnitude of the standard errors in Table III is frequently larger than one would like, although this may in part be due to the small number of liquids which contain a particular component. There are, for example, only eight liquids which contain TiO_{2}, and only a few more with $\mathrm{Fe}_{2} \mathrm{O}_{3}$ out of the 120 or so in the data set, so that these few liquids tend to accumulate the uncertainties of the whole data set, which is then ascribed to either $\mathrm{Fe}_{2} \mathrm{O}_{3}$ or TiO_{2} in the regression. Another possibility is that there is a volume difference between Fe^{3+} in fourfold coordination and Fe^{3+} in sixfold coordination with oxygen and both may occur in these liquids. This can be evaluated as Mysen et al. (1980) have shown that Fe^{3+} in glassy $\mathrm{NaFe}^{3+} \mathrm{Si}_{2} \mathrm{O}_{6}$ is in tetrahedral coordination, whereas in alkali-free glasses such as $\mathrm{Ca}(\mathrm{Mg}, \mathrm{Fe}) \mathrm{Si}_{2} \mathrm{O}_{6}$ it is in octahedral coordination. Our composition 002 is essentially acmite whereas 003 b and 010 are both alkali-free and less silica-rich than metasilicate, and according to Mysen et al. (1980)'s results, are likely to have Fe^{3+} in sixfold coordination. Any difference in volume due to Fe^{3+} being in different coordination should be shown by

$$
\text { (Volume/g.f.w. }-\sum_{\mathbf{i}} \mathrm{X}_{\mathbf{i}} \overline{V_{\mathrm{i}}} / / \mathrm{X}_{\mathrm{Fe}_{2} \mathrm{O}_{3}}=\bar{V}_{\mathrm{Fe}_{2} \mathrm{O}_{3}}^{*}
$$

where $\mathrm{i} \neq \mathrm{Fe}_{2} \mathrm{O}_{3}$. The calculated values of $\bar{V}_{\mathrm{Fe}_{2} \mathrm{O}_{3}}^{*}$ for each liquid are plotted in fig. 2 , using the data given in Tables I, II, and III. These results assume that there are no errors in the other partial molar volumes (Table III), and that the error limits of
$\pm 0.8 \%$, which are just twice the experimental reproducibility, are assigned completely to the volume of $\mathrm{Fe}_{2} \mathrm{O}_{3}$. The calculated volumes of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ in the three ternary liquids $002,003 \mathrm{~b}$, and 010 plotted in fig. 2 show that any difference in volume arising from a difference in coordination cannot be detected within the resolution of these measurements at either temperature. The data in fig. 2 illustrate the difficulty in determining precise values for the partial molar quantities. As the concentration of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ decreases, the volume attributable to it is a small difference between two big numbers divided by a small number; it is for this reason that the data become less precise at 1873 K , for the concentration of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ falls with increasing temperature. Although there may be a compositional dependence of the volume of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ in multicomponent silicate liquids, the data we have are neither precise nor abundant enough to demonstrate this.

Fig. 2. The calculated molar volumes of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ in each liquid plotted against mole fraction of $\mathrm{Fe}_{2} \mathrm{O}_{3}$. Error bars are $\pm 0.8 \%$ in volume/gfw.

In general it would appear that the variation of volume over the range of temperature and composition of this set of data can be represented reasonably well as a linear function of composition, but one would be ill-advised to depend on this conclusion, or the data in Table III, to represent the volume of liquids in binary systems, such as $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$. That the volume of these multicomponent systems can be represented as a linear function of composition may be a consequence of insufficient experimental resolution and precision, coupled of course with their restricted range of composition.

In Table IV equations are given for the variation of each oxide partial molar volume with temperature, and it is with these that our example of a petrological application can be illustrated.

Table IV. Partial molar volumes of oxide components in silicate liquids

$$
\bar{V}=a^{\prime}+b^{\prime} T(\mathrm{~K})
$$

Oxide component	a^{\prime} cc/mole	$b^{\prime} \times 10^{3}$ cc/mole K
SiO_{2}	27.33	-0.1793
TiO_{2}	12.46	6.0634
$\mathrm{Al}_{2} \mathrm{O}_{3}$	27.59	5.4061
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	34.79	5.3463
FeO	6.56	4.3622
MgO	9.61	1.0890
CaO	5.84	6.2646
$\mathrm{Na}_{2} \mathrm{O}$	17.46	6.7659
$\mathrm{~K}_{2} \mathrm{O}$	26.76	11.4590

Petrological applications. Although we are unable to distinguish any contribution to the volume of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ arising from a change in the coordination of Fe^{3+} within this range of silicate liquids, it is intriguing to compare the liquid partial molar volumes with molar volumes of the crystalline oxides, which are given in Table V.

Most striking is the correspondence between the volume of SiO_{2} glass and $\bar{V}_{\mathrm{SO}_{2}}$, and most puzzling is that the volumes of both crystalline MgO and CaO at 1673 K are greater than the respective liquid values, in contrast to all other components. Both $\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ show a large increase compared to corundum and hematite, in which both Al and Fe are in sixfold coordination. But the ratio of the volumes of $\mathrm{Al}_{2} \mathrm{O}_{3}: \mathrm{Fe}_{2} \mathrm{O}_{3}$ for the crystalline state is 0.845 at $298 \mathrm{~K}, 0.807$ at 1673 K , and in the liquids is virtually constant at 0.838 over a range of 350 K . It would seem unlikely that this

Table V. Volumes of crystalline oxides at 298 K and 1673 K (cc/mol)

Oxide	at $298 \mathrm{~K}^{*}$	at $1673 \mathrm{~K} \dagger$	liquid/solid at 1673 K
SiO_{2} (cristobalite)	25.74	27.14	0.99
SiO_{2} (glass)	27.27	27.32	0.99
TiO_{2} (anatase)	20.52	21.30	1.06
$\mathrm{Al}_{2} \mathrm{O}_{3}$	25.58	26.46	1.38
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	30.27	32.76	1.34
$\mathrm{FeO}_{\mathrm{MgO}}^{\mathrm{CaO}}$	12.00	12.79	1.07
$\mathrm{Na}_{2} \mathrm{O}$	11.25	11.95	0.96
$\mathrm{~K}_{2} \mathrm{O}$	16.76	17.70	0.92

* The volumes are from Robie et al. (1978).
\dagger The data of thermal expansion of solid oxides are from Touloukian (1967) except that of SiO_{2} glass which is from Gray (1972).
ratio would be preserved so closely unless the same fraction of Al and Fe were in fourfold coordination in the liquids.

The presence of $\mathrm{Al}^{\mathrm{VI}}$ in silicate liquids induced by pressure has yet to be unambiguously demonstrated (Sharma et al., 1979), so that the pressure dependence of $\bar{V}_{\mathrm{Al}_{2} \mathrm{O}_{3}}^{\mathrm{Tiq}}$ is unlikely to be unusually large. By analogy, we will assume that $\bar{V}_{\mathrm{Fe}_{2} \mathrm{O}_{3}}^{\mathrm{iiq}}$ is also not unusually pressure dependent, for in what follows this could have a strong effect on the ascent path of basic magma.

If during ascent basic magmas remain constant in composition (including constant $\mathrm{Fe}: \mathrm{O}$ ratio), then we may use the fugacity of oxygen in the various types of basic magmas to deduce mineralogical assemblages in their respective source regions. Values of oxygen fugacity for any natural silicate liquid may be calculated at 1 bar for any temperature (Sack et al., 1980), and if the effect of pressure can be estimated, then the oxygen fugacity in the source regions can be found.

The essential reaction is:

$$
\begin{equation*}
\underset{\text { liq }}{4 \mathrm{FeO}}+\underset{\text { liq }}{\mathrm{O}_{2}} \underset{\text { liq }}{2 \mathrm{Fe}_{2} \mathrm{O}_{3}} \tag{1}
\end{equation*}
$$

and given the constraint of constant composition we have at equilibrium

$$
\mathrm{d} \Delta G=\Delta V \mathrm{~d} P-\Delta S \mathrm{~d} T
$$

which leads at constant temperature to

$$
0=\left(2 \bar{F}_{\mathrm{Fe}_{2} \mathrm{O}_{3}}-4 \bar{V}_{\mathrm{FeO}}-\bar{V}_{\mathrm{O}_{2}}\right) \mathrm{d} P
$$

and from the properties of a gas (Denbigh, 1971, pp. 122-6) we have under the same constraints

$$
R T \mathrm{~d} \ln f_{\mathrm{i}}=\overline{V_{\mathrm{i}}} \mathrm{~d} P
$$

which after substitution gives

$$
\int_{1}^{P} \mathrm{~d} \ln f_{\mathrm{O}_{2}}=\frac{1}{R T} \int_{1}^{P}\left(2 \overline{\mathrm{Fe}}_{\mathrm{F}_{2} \mathrm{O}_{3}}-4 \bar{V}_{\mathrm{FeO}}\right) \mathrm{d} P
$$

and if ΔV is assumed to be independent of pressure, then the equation may be integrated to give

$$
\begin{align*}
& \ln f_{\mathrm{O}_{2}}^{P \mathrm{bar}}=\ln f_{\mathrm{O}_{2}}^{1 \text { bar }}+ \\
& \quad \frac{1}{R T}\left(2 \bar{V}_{\mathrm{Fe}_{2} \mathrm{O}_{3}}-4 \overline{\mathrm{~V}}_{\mathrm{FeO}}\right)(P-1) \tag{2}
\end{align*}
$$

and with substitution of the appropriate values in Table IV we obtain

$$
\begin{align*}
\ln f_{\mathrm{O}_{2}}^{P \text { bar }}= & \ln f_{\mathrm{O}_{2}}^{1 \text { bar }}+ \\
& \left(\frac{0.52126}{T}-8.126 \times 10^{-5}\right)(P-1) \tag{3}
\end{align*}
$$

indicating that oxygen fugacity will increase strongly with pressure in liquids of constant $\mathrm{Fe}: \mathrm{O}$. At 1 bar the oxygen fugacity of any silicate lava is related to $\mathrm{Fe}_{2} \mathrm{O}_{3} / \mathrm{FeO}$ by

$$
\begin{equation*}
\ln \left(\mathrm{X}_{\mathrm{Fe}_{2} \mathrm{O}_{3}} / \mathrm{X}_{\mathrm{FeO}}\right)=a \ln f_{\mathrm{O}_{2}}+\frac{b}{T}+c+\sum_{\mathrm{i}} d_{\mathbf{i}} \mathrm{X}_{\mathbf{i}} \tag{4}
\end{equation*}
$$

where $\sum d_{i} X_{i}$ reflects the compositional dependence of $\mathrm{Fe}_{2} \mathrm{O}_{3} / \mathrm{FeO}$ (Sack et al., 1980).

By combination of Eqn. 3 and 4 we obtain

$$
\begin{align*}
\ln f_{\mathrm{O}_{2}}^{P \text { bar }}= & \left\{\ln \left(\mathrm{X}_{\mathrm{Fe}_{2} \mathrm{O}_{3}} / \mathrm{X}_{\mathrm{FeO}}\right)-\frac{b}{T}-c-\sum_{i} d_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}+\right. \tag{5}\\
& \left.\left(\frac{0.52126}{T}-8.126 \times 10^{-5}\right)(P-1)\right\} \frac{1}{a}
\end{align*}
$$

which gives the variation of $\ln f_{\mathrm{O}_{2}}$ for any lava of constant composition as a function of P and T; the constants a, b, c, and d are given by Sack et al. (1980).

This result can be combined with calculations of solid-liquid equilibria to examine the oxygen fugacities in the source regions of basic magmas.

Most basic magmas could be in equilibrium with both orthopyroxene and olivine at their sources in the mantle. We may then write the reaction:

$$
\begin{equation*}
\underset{\text { olivine }}{\mathrm{Mg}_{2} \mathrm{SiO}_{4}}+\underset{\text { liquid }}{\mathrm{SiO}_{2}}=\underset{\text { orthopyroxene }}{2 \mathrm{MgSiO}_{3}} \tag{6}
\end{equation*}
$$

and at equilibrium,

$$
\begin{align*}
& \ln a_{\mathrm{SiO}_{2}}=\frac{\Delta G^{0}}{R T}+\int_{1}^{p} \int_{2}^{\left(\frac{\Delta V}{R T}\right) \mathrm{d} P+} \underset{\mathrm{M}_{\mathrm{g} \mathrm{SiO}_{3}}}{\left(\ln a_{\mathrm{M}_{2}}^{\mathrm{opx}}\right.}-\ln a_{4}^{\text {oivine }} \\
& \mathrm{SiO}_{4} \tag{7}
\end{align*}
$$

We have used data from the appendix of Ghiorso and Carmichael (1980), from Robie et al. (1978), and expansivities and compressibilities from Clark
(1966). With $a_{\mathrm{Mg}_{2} \mathrm{SiO}_{4}}^{\text {olivive }}=0.81$ and $a_{\mathrm{MgSiO}_{3}}^{\mathrm{opx}}=$ 0.80 , contours of silica activity as a function of P and T have been calculated and are plotted in fig. 3 (sub-horizontal curves). With an effective solution model for multicomponent silicate liquids, the silica activity of any lava can be calculated as a function of pressure and temperature (Ghiorso and Carmichael, 1980). At equilibrium this must equal $a_{\mathrm{SiO}_{2}}$ defined by equation 7 . At a given temperature, the pressure at which a lava is in equilibrium with the mantle can thus be calculated, and from equation 5 the oxygen fugacity can then be derived. Contours of $\log _{10} f_{\mathrm{O}_{2}}$, with uncertainties of about ± 1 log unit, have been drawn from data for typical natural liquids of various magma types and are shown in fig. 3 (near-vertical curves). Because examples of the tholeiitic lava type have $\log _{10}$ $a_{\mathrm{SiO}_{2}}$ values greater than -0.5 , the area between this limit and 0.0 has been labelled accordingly. Also shown in fig. 3 are silica activity regions typical of alkali olivine basalt, basanite, and nephelinite lava types, and, for the first two, contours of $\log _{10}$ $f_{\mathrm{O}_{2}}$ derived from equation 5 . The oxygen fugacity curves are discontinuous from one lava type to another, and values for nephelinites are so variable that they have not been contoured. These results are in accord with the general observation that the more alkali-rich and silica-poor lavas are more oxidized (Carmichael et al., 1974).

The oxygen fugacity of magmas at their sources is presumably determined by the solid assemblage of olivine, orthopyroxene, and spinel through the reaction:

$$
\begin{aligned}
3 \mathrm{Fe}_{2} \mathrm{SiO}_{4} & +\underset{\text { olivine }}{3 \mathrm{Mg}_{2} \mathrm{SiO}_{4}}+\mathrm{O}_{2} \\
= & \underset{\text { spinel }}{2 \mathrm{Fe}_{3} \mathrm{O}_{4}}+\underset{\text { orthopyroxene }}{6 \mathrm{MgSiO}_{3}}
\end{aligned}
$$

At equilibrium at P and T :

$$
\begin{align*}
& \ln f_{\mathrm{O}_{2}}^{P, T}=\frac{\Delta G^{0}}{R T}+\int^{P}\left(\frac{\Delta V_{\text {solid }}}{R T}\right) \mathrm{d} P+ \\
& 2 \ln a_{\mathrm{Fe}_{3} \mathrm{O}_{4}}^{\text {spinel }}+6 \ln a_{\mathrm{Mg}_{3}}^{\mathrm{opx}} \mathrm{SiO}_{3}- \\
& 3 \ln a_{\mathrm{Fe}_{2} \mathrm{SiO}_{4}}^{\text {olivine }}-3 \ln a_{\mathrm{Mg}_{2} \mathrm{SiO}_{4}}^{\text {olivin }} \tag{8}
\end{align*}
$$

By equating reactions (5) and (8), and choosing solid compositions, a curve in $\boldsymbol{P}-\boldsymbol{T}$ space for a given lava can be calculated independent of the derivation based on silica activity. The initial estimate used data from the sources given above, along with Hewitt's (1976) data on the equilibrium between fayalite, magnetite, and β-quartz, and $a_{\mathrm{Fe}_{2} \mathrm{SiO}_{4}}^{\text {dio }_{4}}=0.01$. The activity of the magnetite component in spinel was based on the mixing model of Sack (1982) coupled with analytical results on lherzolite spinels given by Brown et al. (1980).

This led to an average value of $a_{\mathrm{Fe}_{3} \mathrm{O}_{4}}^{\text {spinel }}$ of 6.5×10^{-4} at $1250^{\circ} \mathrm{C}$.

Comparison of the results of this calculation with those based on equation (5) made it clear that if $\mathrm{Fe}_{2} \mathrm{O}_{3} / \mathrm{FeO}$ in lavas ranging from mid-ocean ridge basalts through alkali olivine basalts to basanites and nephelinites was pristine, then virtually every sample equilibrated with a different spinel. Put another way, there must be a considerable range in $a_{\mathrm{Fe}_{3} \mathrm{O}_{4}}$ in spinel in the mantle if it influences $f_{\mathrm{O}_{2}}$ and thence $\mathrm{Fe}_{2} \mathrm{O}_{3} / \mathrm{FeO}$ in basic magmas. The results imply that the spinels in the source regions of lavas with increasing alkali content and decreasing silica activity have increasingly higher activities of the magnetite component.

As an indication of how sensitive the content of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ in a spinel is to oxygen fugacity, we may compare the intrinsic oxygen fugacity measurements of Arculus and Delano (1981). Two spinels
varying only by $2.6 \% \mathrm{Fe}_{2} \mathrm{O}_{3}$ were $1.4 \log _{10}$ units of oxygen fugacity different at 1443 K . Values of $f_{\mathrm{O}_{2}}$ for both of these lherzolitic spinels were far too low to be in equilibrium with a tholeiitic magma (fig. 3).

There remains a major inconsistency arising from the measurements of intrinsic oxygen fugacity (Sato, 1978; Arculus and Delano, 1981) on minerals such as olivine and spinel that could have equilibrated with basic magma in a mantle source region. These data essentially require an oxygen fugacity close to the $\mathrm{Fe}-\mathrm{FeO}(\mathrm{I}-\mathrm{W})$ buffer, or about $4 \log _{10}$ units lower than fayalite-magnetite-quartz (F.M.Q.). Sato (1978) has argued therefore that the ascent of terrestrial basic magmas is accompanied by loss of H_{2}, in order that they reach the surface with their observed oxidized state. Arculus and Delano (1981), while accepting this contention in general, are puzzled by the absence of lavas on the

FIG. 3. Effect of pressure on oxygen fugacity of magmas. Sub-horizontal curves show $\log _{10}$ of silica activity of liquids in equilibrium with mantle olivine and orthopyroxene. Near-vertical curves are contours of $\log _{10}$ of oxygen fugacity defined by $\mathrm{Fe}_{2} \mathrm{O}_{3} / \mathrm{FeO}$ in typical magmas, with the assumption that their composition remains constant during ascent. Note that the $f_{\mathrm{O}_{2}}$ curves are not continuous across lava type boundaries, since alkali-rich, silica-poor lavas are generally more oxidized. The measured intrinsic oxygen fugacities of two therzolitic spinels are also plotted (Arculus and Delano, 1981). See text for details.
surface with oxygen fugacities between I-W and $\mathrm{F}-\mathrm{M}-\mathrm{Q}$, as might be expected by the vagaries of H_{2} loss on ascent. For example, lavas such as basanites which often contain ultrabasic nodules might be expected to be the most reduced, as their ascent was relatively fast, and yet they are among the more oxidized of basaltic magmas.

The discrepancy, however, cannot be resolved simply by appealing to the conditions of ascent of basic magma. For the oxygen fugacity given by equation 8 to correspond at 1573 K with that measured intrinsically for a spinel with $2.1 \% \mathrm{Fe}_{2} \mathrm{O}_{3}$ (Arculus and Delano, 1981, no. 271), the activity of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ in spinel, for any reasonable olivine composition, would have to lie between 1.5×10^{-5} and 3.4×10^{-6}, which seems far too small (Sack, 1982) for the analysed spinel composition. The inconsistency between the thermodynamic data will not be resolved by postulates about conditions during ascent of basic magma; that is a subordinate and independent question which cannot be used to reconcile inconsistent data. In those magmas whose ascent is isochemical, then unless ΔV of equation 3 becomes negative with pressure, the oxygen fugacity will increase with increasing pressure, and therefore the oxygen fugacity in the source regions of basic magmas must be greater than on the surface.

Acknowledgements. This work was supported in part by NSF grant EAR-78-03642 (Carmichael), and in part it was prepared for the Director, Office of Energy Research, Office of Basic Energy Sciences, Division of Engineering, Mathematics, and Geosciences of the U.S. Department of Energy under Contract W-7405-ENG-48.

REFERENCES

Aksay, I. A., and Pask, J. A. (1979) J. Am. Ceram. Soc. 62, 332-6.
Arculus, R. J., and Delano, J. W. (1981) Geochim. Cosmochim. Acta, 45, 899-913.
Barrett, L. R., and Thomas, A. G. (1959) Soc. Glass Tech. J. 43, $179-90 \mathrm{~T}$.

Bockris, J. O'M., Tomlinson, J. W., and White, J. L. (1956) Faraday Soc. Trans. 52, 299-310.

Bottinga, Y., and Weill, D. F. (1970) Am. J. Sci. 269, 169-82.
Brown, G. M., Pinsent, R. H., and Coisy, P. (1980) Ibid. 280A, 471-88.
Carmichael, I. S. E., Turner, F. J., and Verhoogen, J. (1974) Igneous petrology. McGraw-Hill. 739 pp .

Clark, S. P., Jr. (1966) Handbook of physical constants. Geol. Soc. Am. Mem. 97, 587 pp.
Denbigh, K. (1971) The principles of chemical equilibrium (3rd edn.). Cambridge Univ. Press. 494 pp.
Edwards, J. W., Speiser, R., and Johnston, L. (1951) J. Appl. Phys. 22, 424-8.
Henderson, J. (1964) Am. Inst. Min. Engr., Metall. Soc. Trans. 20, 501-4.
Hewitt, D. A. (1976) Trans. Am. Geophys. Un. 57, 1020.
Ghiorso, M. S., and Carmichael, I. S. E. (1980) Contrib. Mineral. Petrol. 71, 323-42.
Gray, D. E. (1972) Americal Institute of physics handbook. McGraw-Hill. 2351 pp.
Kennedy, G. C. (1948) Am. J. Sci. 246, 529-49.
Lee, Y. E., and Gaskell, D. R. (1974) Met. Trans. 5, 853-60.
Mysen, B. O., Seifert, F., and Virgo, D. (1980) Am. Mineral. 65, 867-84.
Nelson, S. A., and Carmichael, I. S. E. (1979) Contrib. Mineral. Petrol. 71, 117-24.
Riebling, E. F. (1964) Can. J. Chem. 42, 2811-21.
-(1966) J. Chem. Phys. 44, 2857-65.
Robie, R. A., Hemingway, B. S., and Fisher, J. R. (1978) U.S.G.S. Bull. 1452, 456 pp.

Sack, R. O. (1982) Spinels as petrogenetic indicators. Activity-composition relations at low pressure. (In press.)
-Carmichael, I. S. E., Rivers, M., and Ghiorso, M. S. (1980) Contrib. Mineral. Petrol. 75, $369-76$.

Sato, M. (1978) Geophys. Res. Lett. 5, 447-9.
Sharma, S. K., Virgo, D., and Mysen, B. O. (1979) Am. Mineral. 64, 779-87.
Shartsis, L., Spinners, S., and Capps, W. (1952) Am. Ceram. Soc. Bull. 35, 155-60.
Shiraishi, Y., Ikeda, K., Tamura, A., and Saito, T. (1978) Trans. Jap. Inst. Metal. 19, 264-74.
Tomlinson, J. W., Heines, M. S. R., and Bockris, J. O'M. (1958) Faraday Soc. Trans. 54, 1822-33.

Touloukian, Y. S. (1967) Thermophysical properties of high temperature solid materials (Vol. 4). The Macmillan Comp., N.Y. 1877 pp.
Waseda, Y., Hirata, K., and Ohtahni, M. (1975) High Temp. High Press. 7, 211-26.
Wilson, A. D. (1960) Analyst, 85, 923-7.

[^0]: * Permanent address: Beijing College of Geology, Beijing, China.

[^1]: * The volume of FS-2 was not included in the regression, and is within 0.25% of the volume predicted using the values given in Table III. Its density was measured with Pt and Fe bobs which gave identical results.

