Hydroxyl-bastnaesite-(Nd), a new mineral from Montenegro, Yugoslavia

ZORAN MAKSIMOVIĆ

Faculty of Mining and Geology, University of Belgrade, Djušina 7, 11000 Belgrade, Yugoslavia

AND

György Pantó

Laboratory for Geochemical Research, Hungarian Academy of Sciences, Budaörsi út, 45, H-1112 Budapest, Hungary

ABSTRACT. Hydroxyl-bastnaesite-(Nd), the Nd- and OH-dominant new member of the bastnaesite group, has been found in the red karstic bauxites near Nikšić, Montenegro. It occurs as whitish, irregular aggregates of crystals usually 100-200 μ m in diameter. Hexagonal with the cell dimensions a = 7.191 and c = 9.921 Å, with Z = 6. The strongest lines of the X-ray powder diffraction pattern (d, I, hkl) are: 4.95 80(002); 3.596 79(110); 2.911 100(112); 2.077 29(300); 2.042 51(114); 1.914 30(302). The mineral is uniaxial positive, ω 1.715, ε 1.81; D_{cale} 4.89 g/cm³.

Electron probe analysis, using garnet, apatite and synthetic glass standards, combined with thermogravimetric and evolved gas analysis, gave Y_2O_3 0.2, La_2O_3 27.1, Ce_2O_3 0.3, Pr_2O_3 8.5, Nd_2O_3 31.5, Sm_2O_3 4.4, Eu_2O_3 1.3, Gd_2O_3 1.4, CaO 0.3, F 3.3, H_2O 2.26, CO_2 20.63, sum 101.19, less O = F 1.39, total 99.80%. This analysis calculates to $(Nd_{0.41}La_{0.36}Pr_{0.11}Sm_{0.06}Gd_{0.02}$ $Eu_{0.02}Ca_{0.01}c_{0.99}(CO_3)_{1.03}[(OH)_{0.55}F_{0.38}]_{20.93}$, or ideally, $(Nd_{La})CO_3(OH,F)$, with Nd > La and OH > F.

KEYWORDS: hydroxyl-bastnaesite-(Nd), bastnaesite, new mineral, rare-earth elements, Montenegro, Yugo-slavia.

HYDROXYL-BASTNAESITE-(Nd) was discovered recently in the Jurassic karstic bauxites near town Nikšić in Montenegro (Maksimović and Pantó, 1983). It occurs in very small quantities as a rare authigenic mineral in the red bauxites near the contact with the footwall limestone. The mineral was concentrated in whitish, irregular aggregates of crystals, usually 100-200 μ m across, but a few occur as clusters 1 to 5 mm in diameter in which the bastnaesite is intergrown with bauxite.

Morphology. The crystal habit of hydroxylbastnaesite-(Nd) is typically platy, but the plates may have crystallized or intergrown so as to produce a variety of morphologies within a small volume. In an SEM photograph of an area approximately 30 μ m by 40 μ m (fig. 1), a small cavity of crystals occurs within what appears to be a more massive body. The outside, apparently massive rim is composed of plates of bastnaesite so tightly intergrown and compacted as to appear massive. The cleavage surfaces and edges of the crystal stacks show, however, that they are built of plates. Within the cavity is a more open cluster of stacks of plates present in several orientations that illustrate the crystal habit and morphology. Many of the plates tend to be elongated. Because a wavelengthdispersive microprobe scan showed all of these crystals to be bastnaesite-(Nd), it is inferred that, despite differences in physical compaction and intergrowth, these are mineralogically the same.

FIG. 1. SEM photograph of hydroxyl-bastnaesite-(Nd).

Chemical properties. The mineral was chemically analysed with a JEOL Superprobe JXA-733, utilizing an operating voltage of 15 kV and a beam current of 0.15 μ A. The data were corrected using the ZAF method adapted to the instrument by JEOL Ltd. The standards used were Y-Al garnet for Y; apatite for Ca and F; synthetic glass standards of Drake and Weill (1972) for rare-earth elements. H₂O and CO₂ were determined by means of a Perkin Elmer TGS-2/System 4 Thermobalance, equipped with a Balzers QMG-511 mass-spectrometer. The analysis is presented in Table I.

Table	I.	Electron	microprobe	analysis	of
hydroxyl-bastneesite-(Nd)					

··· ·	
	wt.%
¥203	0.2
La203	27.1
Ce203	0.3
Pr203	8.5
Nd203	31.5
Sm203	4.4
Eu203	1.3
Gd203	1.4
CaO	0.3
F	3.3
н ₂ 0 ^ж	2 26
co2 [#]	20.63
Total	101.19
-0=F2	1.39
Total	99.80

* CO₂ and H₂O determined by thermogravimetric and evolved gas analysis.

A 5.128 mg sample of the mineral was analysed by simultaneous TG/DTG and evolved gas analysis, using an argon atmosphere and a heating rate of 10 °K/min. The DTG curve shows a strong peak at 552 °C due to the losses of CO₂ and H₂O, and a small one at 746 °C due to loss of CO₂ (fig. 2). The thermal data indicate two possible CO₃ groups which are held differently in the structure: one group is released between 450 and 620 °C, and the other between 650 and 900 °C. This agrees well with the infra-red study of natural hydroxyl-bastnaesite by Akhmanova and Orlova (1966).

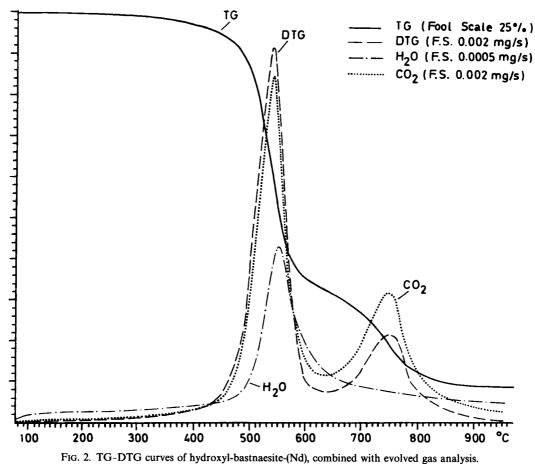
The resultant analysis yields the following empirical formula, based on 4 oxygen ions:

$$\begin{array}{c} (Nd_{0.41} \ La_{0.36} Pr_{0.11} Sm_{0.06} Gd_{0.02} Eu_{0.02} \\ Ca_{0.01})_{\Sigma 0.99} (CO_3)_{1.03} [(OH)_{0.55} F_{0.38}]_{\Sigma 0.93}. \end{array}$$

The ideal formula is $(Nd,La)CO_3(OH,F)$, with Nd > La and OH > F.

Physical and optical properties. Under the stereoscopic microscope hydroxyl-bastnaesite-(Nd) is whitish, with a white streak. The luster is dull. The hardness of individual grains could not be determined because of the weak cohesion of the aggregates; the apparent aggregate hardness is about 1 to 2. Parting: {001}. Density could not be measured because of the small grain size. The calculated density is 4.89 g/cm³. The mineral does not luminesce in either ultraviolet radiation or the beam of the electron microprobe.

Optically, hydroxyl-bastnaesite-(Nd) is uniaxial positive with refractive indices $\omega = 1.715(2)$, and $\varepsilon = 1.81(1)$.


Satisfactory compatibility of the chemical and physical data is suggested by $1 - K_{\rm P}/K_{\rm C} = 0.019$ (Mandarino, 1979).

X-ray study. An X-ray single crystal study could not be made because of the fine-grained nature of the material. The powder diffraction pattern was

Table II. X-ray powder diffraction data for hydroxyl-bastnaesite-(Nd)

Am a 1+	D.m	I. Farkar)	

d_{obs} d_{calc} hk1I4.954.96002883.5963.596110792.9112.9111121002.6332.63720232.4812.480004162.2922.29021132.1262.12721222.0772.076300292.0422.042114511.9141.915302301.6901.690222161.6551.65400631.5911.592304121.5021.50211691.4551.45622491.3591.35941051.2171.21722641.1921.19241471.1651.1653324	(Analyst Dr L.Farkas)					
3.596 3.596 110 79 2.911 2.911 112 100 2.633 2.637 202 3 2.481 2.480 004 16 2.292 2.290 211 3 2.126 2.127 212 2 2.077 2.076 300 29 2.042 2.042 114 51 1.914 1.915 302 30 1.798 1.798 220 10 1.690 1.690 222 16 1.655 1.654 006 3 1.591 1.592 304 12 1.592 1.654 006 3 1.591 1.592 304 12 1.592 1.654 90 5 1.455 1.456 224 9 1.359 1.359 410 5 1.217 1.217 226 4 1.192 1.192 414 7	dobs	dcalc	hk1	I		
2.911 2.911 112 100 2.633 2.637 202 3 2.481 2.480 004 16 2.292 2.290 211 3 2.126 2.127 212 2 2.077 2.076 300 29 2.042 2.042 114 51 1.914 1.915 302 30 1.798 1.798 220 10 1.690 1.690 222 16 1.655 1.654 006 3 1.591 1.592 304 12 1.592 1.654 006 3 1.591 1.592 304 12 1.592 1.654 006 3 1.591 1.592 116 9 1.455 1.456 224 9 1.359 1.359 410 5 1.311 1.311 412 100 1.294 1.294 306 5 1.217 1.217 226 4 1.192 1.192 414 7	4.95	4.96	002	88		
2.633 2.637 202 3 2.481 2.637 202 3 2.481 2.480 004 16 2.292 2.290 211 3 2.126 2.127 212 2 2.077 2.076 300 29 2.042 2.042 114 51 1.914 1.915 302 30 1.798 1.798 220 10 1.690 1.690 222 16 1.655 1.654 006 3 1.591 1.592 304 12 1.592 1.502 116 9 1.455 1.456 224 9 1.359 1.559 410 5 1.311 1.311 412 10 1.294 1.294 306 5 1.217 1.217 226 4 1.192 1.192 414 7	3.596	3.596	110	79		
2.481 2.480 004 16 2.292 2.290 211 3 2.126 2.127 212 2 2.077 2.076 300 29 2.042 114 51 1.914 1.915 302 30 1.798 1.798 220 10 1.690 1.690 222 16 1.655 1.654 006 3 1.591 1.592 304 12 1.502 1.502 116 9 1.455 1.456 224 9 1.591 1.592 304 12 1.592 1.456 224 9 1.359 1.456 224 9 1.311 1.311 412 10 1.294 1.294 306 5 1.217 1.217 226 4 1.192 1.192 414 7	2.911	2.911	112	100		
2.292 2.290 211 3 2.126 2.127 212 2 2.077 2.076 300 29 2.042 2.042 114 51 1.914 1.915 302 30 1.798 1.798 220 10 1.690 1.690 222 16 1.655 1.654 006 3 1.591 1.592 304 12 1.502 1.502 116 9 1.455 1.456 224 9 1.359 1.359 410 5 1.311 1.311 412 10 1.294 1.294 306 5 1.217 1.217 226 4	2.633	2.637	202	3		
2.126 2.127 212 2 2.077 2.076 300 29 2.042 2.042 114 51 1.914 1.915 302 30 1.798 1.798 220 10 1.690 1.690 222 16 1.655 1.654 006 3 1.591 1.592 304 12 1.502 1.502 116 9 1.455 1.456 224 9 1.359 1.359 410 5 1.311 1.311 412 10 1.294 1.294 306 5 1.217 1.217 226 4	2.481	2.480	004	16		
2.077 2.076 300 29 2.042 2.042 114 51 1.914 1.915 302 30 1.798 1.798 220 10 1.690 1.690 222 16 1.655 1.654 006 3 1.591 1.592 304 12 1.502 1.502 116 9 1.455 1.456 224 9 1.359 1.359 410 5 1.431 1.311 412 10 1.294 1.294 306 5 1.217 1.217 226 4 1.192 1.192 414 7	2.292	2.290	211	3		
2.042 2.042 114 51 1.914 1.915 302 30 1.798 1.798 220 10 1.690 1.690 222 16 1.655 1.654 006 3 1.591 1.592 304 12 1.592 1.654 024 9 1.455 1.456 224 9 1.359 1.559 410 5 1.311 1.311 412 10 1.294 1.294 306 5 1.217 1.217 226 4 1.192 1.192 414 7	2.126	2,127	212	2		
1.914 1.915 302 30 1.798 1.798 220 10 1.690 1.690 222 16 1.655 1.654 006 3 1.591 1.592 304 12 1.502 1.502 116 9 1.455 1.456 224 9 1.359 1.359 410 5 1.311 1.311 412 10 1.294 1.294 306 5 1.217 1.217 226 4 1.192 1.192 414 7	2.077	2.076	300	29		
1.798 1.798 220 10 1.690 1.690 222 16 1.655 1.654 006 3 1.591 1.592 304 12 1.502 1.502 116 9 1.455 1.456 224 9 1.359 1.359 410 5 1.311 1.311 412 10 1.294 1.294 306 5 1.217 1.217 226 4 1.192 1.192 414 7	2.042	2.042	114	51		
1.690 1.690 222 16 1.655 1.654 006 3 1.591 1.592 304 12 1.502 1.502 116 9 1.455 1.456 224 9 1.359 1.359 410 5 1.311 1.511 412 10 1.294 1.294 306 5 1.217 1.217 226 4 1.192 1.192 414 7	1.914	1.915	302	30		
1.655 1.654 006 3 1.591 1.592 304 12 1.502 1.502 116 9 1.455 1.456 224 9 1.359 1.359 410 5 1.311 1.311 412 10 1.294 1.294 306 5 1.217 1.217 226 4 1.192 1.192 414 7	1.798	1.798	220	10		
1.591 1.592 304 12 1.592 1.592 116 9 1.455 1.456 224 9 1.359 1.359 410 5 1.311 1.311 412 10 1.294 1.294 306 5 1.217 1.217 226 4 1.192 1.192 414 7	1.690	1.690	222	16		
1.502 1.502 116 9 1.455 1.456 224 9 1.359 1.359 410 5 1.311 1.311 412 10 1.294 1.294 306 5 1.217 1.217 226 4 1.192 1.192 414 7	1.655	1.654	006	3		
1.455 1.456 224 9 1.359 1.359 410 5 1.311 1.311 412 10 1.294 1.294 306 5 1.217 1.217 226 4 1.192 1.192 414 7	1.591	1.592	304	12		
1.359 1.359 410 5 1.311 1.311 412 10 1.294 1.294 306 5 1.217 1.217 226 4 1.192 1.192 414 7	1.502	1.502	116	9		
1.311 1.311 412 10 1.294 1.294 306 5 1.217 1.217 226 4 1.192 1.192 414 7	1.455	1.456	224	9		
1.294 1.294 306 5 1.217 1.217 226 4 1.192 1.192 414 7	1.359	1.359	410	5		
1.217 1.217 226 4 1.192 1.192 414 7	1.311	1.311	412	10		
1.192 1.192 414 7	1.294	1.294	306	5		
	1.217	1.217	226	4		
1.165 1.165 332 4	1.192	1.192	414	7		
	1.165	1.165	332	4		

indexed by analogy with the pattern of bastnaesite (Table II). The lattice parameters were refined by least squares, utilizing the powder data. The refined unit-cell parameters of the hexagonal cell are a = 7.191(1), c = 9.921(2)Å, which give a cell volume of 444.3 Å³.

Infra-red spectrum. The infra-red spectrum of hydroxyl-bastnaesite-(Nd) indicate the presence of OH based on vibrations in the 3400-3600 cm⁻¹ region. The wave numbers of the maxima of the observed bands are very similar to those of natural hydroxyl-bastnaesite, as given by Akhmanova and Orlova (1966).

Name and type specimen. Hydroxyl-bastnaesite-(Nd), the Nd- and OH-dominant member of the bastnaesite group, was named in accordance with Levinson's rules for the naming of rare-earth analogues of known species (Levinson, 1966). The name and the species were approved by the IMA Commission on New Minerals and Mineral Names, prior to publication. The holotype material (Zagrad 10, 8397) is deposited at the Department of Mineralogy and Petrology, Faculty of Mining and Geology, University of Belgrade, Belgrade, Yugoslavia; at the Laboratory for Geochemical Research, Hungarian Academy of Sciences, Budapest, Hungary; and at the Royal Ontario Museum, Toronto, Canada.

Acknowledgements. The authors are grateful to Mr Darko Sturman (Royal Ontario Museum, Toronto) for help in determination of optical properties, Mr Ferenz Till (Hungarian Academy of Sciences) for thermogravimetric analysis, and to Dr Walter D. Keller (University of Missouri, Columbia) for assistance with the scanning electron micrograph. This work was done as a part of the joint research project between the Serbian Academy of Sciences and Arts and the Hungarian Academy of Sciences.

REFERENCES

- Akhmanova, M. V., and Orlova, L. P. (1966) Geochem. Intern. 3, 444-51.
- Drake, M. J., and Weill, D. F. (1972) Chem. Geol. 10, 179-81.

Levinson, A. A. (1966) Am. Mineral. 51, 152-8.

- Maksimović, Z., and Pantó, G. (1983) *Travaux ICSOBA*, (13) **18**, 191–200.
- Mandarino, J. A. (1979) Can. Mineral. 17, 71-6.

[Manuscript received 8 March 1985]