Wupatkiite from the Cameron Uranium District, Arizona, a new member of the halotrichite group

SIDNEY A. WILLIAMS

Globo de Plomo, Box 872, Douglas AZ 85608, USA

AND

FABIEN P. CESBRON

LEMI-ESEM, Rue Leonardo de Vinci, 45072 Orleans Cedex 2, France

Abstract

Wupatkiite (Co,Mg,Ni)Al₂(S0₄)₄·22H₂O is a new member of the halotrichite group. It occurs 8 miles ESE of Gray Mountain, Arizona, near the prehistoric pueblo dwelling Wupatki. It occurs as cross-fibre veinlets with fibres up to 8mm long. Colour: empire rose (RHS48C), streak white, H. = 1½. G = 1.92, D(calc) = 1.87g/cm³. Nonpleochroic with α = 1.477, γ = 1.484, Z^fibre axis = 12°. Wet chemistry gave MgO 1.63, CaO 0.10, MnO 0.17, FeO 0.15, NiO 0.52, CuO 0.12, CoO 3.41, Al₂O₃ 11.30, SO₃ 35.97, H₂O 42.26 (total 95.63%); rem. = montmorillonite and quartz. Parameters refined from the powder pattern are close to those of halotrichite. Wupatkiite is monoclinic $P2_1/c$ with a = 6.189 Å, b = 24.23 Å, c = 21.20 Å, β = 100.33°. Strongest lines are 4.790, 100 (024); 4.295, 27 (140); 3.945, 26 (025); 3.768, 33 (062); 3.494, 92 (124, 063).

KEYWORDS: wupatkiite, halotrichite, new mineral, Gray Mountain, Arizona.

Introduction

The new mineral was discovered by both authors in June 1993 8 miles ESE of Gray Mountain, Coconino County, Arizona. The locality is not far from the Little Colorado River. It is a post-mine mineral occurring as encrustations on the walls of a shallow open cut that was exploited for uranium during the prospecting frenzy of several decades past. The Cameron uranium district has been described by S. R. Austin (1964) and the type locality is typical of deposits in the area.

Wupatkiite is named for the prehistoric pueblo dwelling Wupatki not far to the south of the discovery site. The new mineral and the mineral name have been approved by the Commission on New Minerals and New Mineral Names of the International Mineralogical Association (IMA). A portion of the type sample will be deposited in the mineralogical collection of the Ecole Nationale Superieure des Mines of Paris.

Occurrence

Primary ores of U-Co-Ni-Mo occur as colloidal sooty black material cementing grits of the Shinarump member in the upper Chinle Formation. The mineralized bed is 1-2m thick and carries considerable carbonized wood trash admixed with quartz-rich detritus. The mineralogy of the primary ore was not studied, but two samples of it gave an averaged analysis as follows (by X-ray fluorescence): Co 404 ppm, Ni 110 ppm, Cu 499 ppm, and Mn 0.66%. Even the freshest-appearing ore has experienced some oxidation and splendent crystals of supergene gypsum are common in the interstices of the grit.

Wupatkiite occurs in slabs of transported sulphaterich material that have formed a curious concrete-like crust on the wall of the open cut. Much of this material is clastic quartz, detached from the rock and embedded in a maze of cross-fibre veins of pickeringite. The pickeringite veins may change

TABLE 1. X-Ray powder data for wupatkiite and halotrichite

	Pre	sent stud	y	JCPDS no. 39-1387			Present study			JCPDS no. 39-1387	
<i>I/I</i> _o	$d_{ m obs.}$	$d_{\mathrm{calc.}}$	hkl	$d_{ m obs}$	hkl	<i>I/I</i> _o	$d_{ m obs.}$	$d_{ m calc.}$	hkl	$d_{ m obs}$	hkl
8	15.8	15.8	011	15.8	011	<1	2.858	2.855	221		
1	12.2	12.1	020	12.1	020	12	2.826	2.826	172	2.820	106 127
7	10.43	10.48	002	10.46	021 002			2.825	056		
10	9.57	9.58	012	9.58	012	11	2.779	2.777	083	2.779	$083 \ \bar{2}24$
10	7.90	7.90	022	7.91	022	6	2.763	2.761	231	2.751	$212 \ \bar{2}42$
1	6.70	6.68	013	6.71	013	6	2.715	2.717	181		
7	6.40	6.38	032	0.72	015	·		2.713	174	2.715	$\bar{1}74 222$
22	6.03	6.03	023	6.02	023	13	2.679	2.677	$\overline{\overline{1}}82$	2.677	182
22	0.05	0.05	023	5.92	110	7	2.634	2.636	$\overline{2}25$	2.643	232
7	5.82	5.82	041	5.82	041	•	2.05	2.635	066	4.0.0	
1	5.71	5.73	102	5.68	102 112	9	2.607	2.607	092	2.611	
1	5.71	3.13	102	5.46	$\bar{1}21 111$,	2.007	2.607	$\frac{1}{2}51$	2.011	
11	5.27	5.27	033	5.27	033 042			2.606	213		
5	5.09	5.10	014	5.11	$014 \ \overline{1}22$	5	2.576	2.575	182		
	4.947	4.945	113	4.93	Ĭ13 102	6	2.562	2.562	223		
13	4.947	4.943	113	4.86	130	U	2.302	2.561	$\frac{223}{235}$		
100	4 700	4 700	024		024	8	2.550	2.550	175		
100	4.790	4.790		4.78	123	0	2.550	2.549	146		
10	4.660	4.663	123	4.66		-	2 512	2.512	$\frac{140}{216}$		
12	4.586	4.592	131	4.58	131	5	2.513				
<1	4.536	4.535	122	4.54	122 043		2.407	2.512	251 184		
14	4.384	4.381	034	4.00	Ŧ0.4	1	2.487	2.489			
2	4.366	4.367	Ī04	4.38	Ī04	3	2.468	2.467	245		
27	4.295	4.295	140	4.29	140	_	0.455	2.467	191		
17	4.159	4.161	<u>1</u> 42	4.16	Ī42 113	5	2.455	2.456	2 61		
		4.158	113		-			2.453	127		
22	4.106	4.108	124	4.09	1 24 141	2	2.431	2.431	260		
		4.105	141					2.431	156		
14	3.980	3.986	123	3.987	123	8	2.396	2.398	067		
		3.976	053					2.397	224		
26	3.945	3.945	025	3.947	025	3	2.383	2.382	Ĩ76		
8	3.885	3.880	1 43	3.876	$\overline{1}43$	<1	2.343	2.344	175		
33	3.768	3.766	062	3.751	062 133	5	2.299	2.299	$\bar{2}$ 72		
				3.705	Ī52			2.296	262		
8	3.657	3.660	151			7	2.278	2.284	086		
		3.650	104	3.659	104	2	2.247	2.245	$\bar{2}65$		
9	3.608	3.610	114	3.610	Ī25	4	2.230	2.234	225		
92	3.494	3.495	124	3.484	124 006	3	2.192	2.192	$\mathbf{\tilde{2}47}$		
-	-	3.493	063					2.191	$\bar{1}95$		
15	3.441	3,442	152	3.442	045	1	2.157	2.158	$\bar{2}82$		
,		3.441	016			2	2.123	2.124	087		
12	3.345	3.342	026			<1	2.100	2.102	216		
8	3.322	3.327	134	3.343	134	3	2.079	2.080	$\bar{2}84$		
8	3.272	3.272	161	3.285	Ī62 072			2.079	226		
Ü	3.2.2	512.72		3.252	$\bar{1}54$	2	2.057	2.058	255		
				3.199	064			2.056	195		
7	3.205	3.202	Ĩ45	3.239	145			2.055	$\bar{3}12$		
,	3.203	3.202	143	3.199	064	2	2.039	2.041	276		
o	3.168	3.169	1 26	3.172	126 115	7	2.012	2.011	$\frac{2}{3}$ 14		
8	3.108	3.109	073	3.172	073	2	1.969	1.970	197		
5			202	3.112	$\bar{2}02 \ \bar{2}11$		1.707	1.968	330		
1	3.072	3.074	$\frac{202}{211}$	3.002	202 211	3	1.951	1.953	342		
_	2.042	3.068		3.037	080	1	1.921	1.922	312		
9	3.043	3.044	200	3.03/	Vov		1.891	1.888	$\frac{312}{353}$		
_		3.042	136	2.021	046 210	2	1.873	1.872	350		
9	3.018	3.015	046	3.021		6			336 336		
12	2.962	2.965	164	2.964	164 017	5	1.858	1.857	_		
13	2.887	2.887	146	2 000	074			1.857	287		
		2.884	074	2.889	074						

abruptly to wupatkiite along strike, or separate veins of the two minerals may run in parallel. On the surface of the encrustation small spherules of moorhouseite are present. Other minerals identified during the study are nickel-boussingaultite, hydrohonessite, magnesiocopiapite, and ilsemannite. These minerals were not found in the cobalt-rich material, however.

Physical and optical properties

Single crystals of wupatkiite are mere fibres $5-10~\mu m$ in diameter but up to 8mm long. All of the material found occurs as cross-fibre veins though occasionally the fibres may extend into a void forming tufts of delicate twisted fibres. The Mohs hardness of massive material is $1\frac{1}{2}$. The luster is silky in asbestiform masses.

The colour of the wupatkiite is empire rose (RHS 48C). Paler colours occur at the junction with pickeringite in the veins but these are merely transitory. The streak of the mineral is white. The specific gravity was determined with a Berman Balance in toluene (at 26°C) using a 6.80 mg sample and is 1.92.

Isolated fibres show a maximum extinction angle to Z of 12°. They also display a cleavage oblique (about 70°) to the length of the crystallites. Pleochroism is not visible in such minute crystals but in parallel bundles of them it is a very pale pink with the strongest colour parallel to the length of the bundle. The fibre bundles give an impression of polysynthetic twinning but this is not the case. Rather, the orientation of fibres about their length appears to be at random.

The indices of refraction measured as n_g and n_p are 1.484 and 1.477 respectively. White light was employed for the measurement and evidently dispersion is weak.

Crystallography

Owing to the minuteness of the fibres, single crystal work was not feasible and cell parameters were obtained by least squares refinement of the d_{hkl} values from the X-ray powder pattern. The pattern was obtained with a Philips diffractometer (Cu- $K\alpha$) and also with a 360 mm diameter Guinier-de Wolff Nonius camera (Cu- $K\alpha$). Quartz was added as an internal standard. With both instruments the d_{hkl} values were similar; intensities given here are those recorded by the diffractometer.

X-ray powder patterns of wupatkite and halotrichite match very well, so the refinement was performed in several stages using the parameters given in JCPDS PDF no. 39-1387 for halotrichite from Hungary. In order to avoid ambiguity, owing to the large values of b and c, lines which could be indexed without any doubt were used first.

Wupatkiite is monoclinic $P2_1/c$ with a = 6.189 (4) Å, b = 24.234 (10) Å, c = 21.204 (10) Å, and $\beta = 100.33$ (5). The indexed powder pattern is given in Table 1 and compared with the data presented for halotrichite. A few faint lines corresponding to clay admixed with the sample are omitted.

Chemistry

Water was determined in the closed tube (SAW) and it was observed as well. Using an 18.33mg sample the water loss was 40.45%. Wupatkiite melts readily producing a bright pink syrupy liquid; when all water has been lost, a dense blue slag of distinctive colour (Wistaria blue, RHS 92B) is the result.

Chemical analysis was performed on several tens of milligrams using atomic absorption spectroscopy for Ni, Fe, Mg, Cu, and Al, colorimetry for Co, ICP.ES for Ca, and gravimetry for S. Water was determined independently (HV) by the Penfield method.

Analytical results and molecular ratios calculated on the basis Co + Ni + Mg + ... + Al = 3 are given in Table 2. The total of 95.63% is readily explained as due to the presence of insoluble quartz and montmorillonite residue. The latter mineral caused turbidity of the initial solution as a suspended solid.

TABLE 2. Chemical analysis and molecular ratios for wupatkiite

	Wt. %	Mol. ratio
CoO	3.41	0.424
MgO	1.63	0.376
NiO	0.52	0.065
MnO	0.17	0.022
FeO	0.15	0.019
CaO	0.10	0.017
CuO	0.12	0.014
Al_2O_3	11.30	2.063
SO_3	35.97	4.181
H ₂ O	42.26	21.83
Total	95.63	

These data lead to the simplified formula (Co,Mg)Al₂(SO₄)₄.22H₂O with cobalt in excess over magnesium. A pure cobalt end-member of the series has not yet been found.

A second analysis of cobalt was performed by atomic absorption to verify the predominance of cobalt, using another sample taken from the original material, and it gave 3.24% Co.

Concluding remarks

Wupatkiite is a new member of the halotrichite group for it is the first such mineral found with cobalt the predominant cation. It gives a Co:Mg ratio of 1.126:1 vs. a ratio of Co:Mg = 0.325:1 for 'kasparite', a cobaltian pickeringite described by Dubansky (1956). Kasparite contains 2.52% MgO and 1.52% CoO.

Acknowledgements

The authors thank Héléne Vachey for the chemical

analysis and Marie-Claude Sichère for collecting the diffractometer data.

References

Austin, S.R. (1964) Mineralogy of the Cameron Area, Coconino County, Arizona. U.S. Atomic Energy Comm. RME-99, Tech. Inf. Serv., Oak Ridge, 99.
Dubanskỳ, A. (1956) Pžispěvky K Poznani geochemie sekundarnich sulfatu III, Sulfaty z Dubniku u Prešóva. Chem. Lasty Praha, 50, 1347-61.

[Manuscript received 31 October 1994]