SOME COMPUTATIONS ON SVANBERGITE, WOODHOUSEITE AND ALUNITE

A. Pabst, University of California, Berkeley, California.

Abstract

Computations have been carried out to correct the indexing of a powder diffraction pattern of svanbergite found in the literature. Similar computations lead to the first published indexing of powder patterns of woodhouseite. Parameters are obtained for the structures of these two minerals. Less extended computations for alunite, using the parameters given by Hendricks, afford a basis for evaluating the results. They also afford a check on the reliability of standard patterns recorded on ASTM cards.

Incidentally the transformation from hexagonal to rhombohedral axes is discussed.

Introduction

Svanbergite is a rare member of the alunite-beudantite group. Its composition may be written $\mathrm{SrAl}_{3}\left(\mathrm{SO}_{4}\right)\left(\mathrm{PO}_{4}\right)(\mathrm{OH})_{6}$. In a recent paper Ygberg ${ }^{1}$ has reported on a powder diffraction of svanbergite and has calculated lattice dimensions and density.

Minerals of the alunite-beudantite group have been shown by Hendricks ${ }^{2}$ to have a rhombohedral lattice. Ygberg also assigns svanbergite to a rhombohedral space group but in his indexing of part of a powder pattern, in which he gives indices for 26 planes, 8 planes fail to meet the criteria for a rhombohedral lattice. It follows that either the assignment of the space group, or the indexing of the pattern must be in error.

Specimens of svanbergite were not available, but it was found that Ygberg's observations could be checked directly without new experimental data. Once these computations had been carried out it was a simple matter to extend them to the related mineral woodhouseite, $\mathrm{CaAl}_{3}\left(\mathrm{SO}_{4}\right)\left(\mathrm{PO}_{4}\right)(\mathrm{OH})_{6}$, for which Ygberg reported lattice dimensions and density though his tabulation of the powder pattern is not indexed, and to check them against new observations.

An alunite-like structure was assumed for these minerals and so it has seemed desirable to calculate the theoretical intensities and positions of lines in an alunite powder pattern using the parameters given by Hendricks, who did not report on such a pattern, and to compare these with published patterns and a new pattern obtained from alunite from the type locality. In the following the results on these three minerals will be reported in the order in which they have just been mentioned.

[^0]
Svanbergite

Since no new observations were made on svanbergite the cell dimensions given by Ygberg, $a_{0}=6.96 \pm 0.03 \AA$ and $c_{0}=16.8 \AA$, were accepted. The stated dimensions correspond to an axial ratio, $c / a, 2.414$, which is close to twice the value assigned from goniometric measurements. The observed density is given as 3.20 and the calculated density corresponding to three formular units in the hexagonal cell as 3.18.

Ygberg correctly gives the dimensions of the corresponding rhombohedral cell as $a_{r h}=6.89 \AA$ and $\alpha=60^{\circ} 38^{\prime}$, but states that these were found to be "the dimensions of the rhombohedral unit cell $\{40 \overline{4} 1\}$." This is rather puzzling. A cell of the stated dimensions would, if referred to the hexagonal axes found by x-ray diffraction have the indices $10 \overline{1} 1$ or $01 \overline{1} 1$. If referred to axes with half the axial ratio, as chosen from the morphology, the indices would be $20 \overline{2} 1$ or $02 \overline{2} 1$.

Reports on a powder pattern of svanbergite are given by Ygberg in two tables. In the first of these (his table 2) he gives intensity, $\sin ^{2} \theta$ (obs), $\sin ^{2} \theta$ (calc) and hexagonal indices for 22 lines whose $\sin ^{2} \theta_{C u} \leqq 0.420$. In another table (his table 5) intensities and spacings (presumably observed spacings) are given for 33 lines of svanbergite together with similar data for woodhouseite. At the base of the former table the value of $\lambda^{2} / 3 a^{2}$ is given as 0.0162 though the calculated values of $\sin ^{2} \theta$ given for $11 \overline{2} 0$, $22 \overline{4} 0$ and $41 \overline{5} 0$ correspond to 0.0160 , whereas the stated length of a_{h} leads to 0.0163 .

Disregarding these difficulties, spacings were calculated from the stated cell dimensions for all rhombohedral planes with spacings greater than 1.3. This alone was not quite sufficient for assured indexing of the pattern because many coincidences or near coincidences occur. Assuming that the structure of svanbergite is similar to that found for alunite by Hendricks, that the content of the hexagonal cell is three formular units, and that interionic distances are limited by known ionic radii, a search was made for parameters that would yield intensities accounting for Ygberg's observations.

Hendricks assigned alunite to the space group $C_{3 v}{ }^{5}-R 3 m$, having observed it to be pyroelectric. The structure he described for alunite may, however, be considered to be in the space group $D_{3} d^{5}-R \overline{3} m .^{3}$ In this structure all atoms lie in symmetry planes. For this reason it is a rather simple matter to picture possible atomic arrangements by constructing, say, a $1 \overline{2} 10$ section through the cell as has been done for another member of the group (woodhouseite) in Fig. 1. From such a diagram either hexag-

[^1]onal or rhombohedral coordinates of atoms may be read off directly and by a system of overlapping grids (not shown in the figure) it is possible to make a quick graphical transformation of coordinates. It will be noted that for the hexagonal cell the a_{1} axis does not lie in the plane of projection but the coordinates of atoms in this plane along an axis normal to c are the same as their a_{1} coordinates. For the rhombohedral cell an equally convenient situation exists. The outline of this cell in the plane in question is a parallelogram whose edges are $a_{r 1}$ and the face diagonal of the unit rhombohedron. This face diagonal is vectorially $a_{r 2}+a_{r 3}$. All atoms in this plane will have equal coordinates along $a_{r 2}$ and $a_{r 3}$ which will be the same as the coordinate of such an atom along the face diagonal as can be seen in the lower part of Fig. 1.

A choice of parameters was first made from ionic radii. This was then modified with the help of intensity calculations. In addition to trials for isolated planes several extended series of intensity calculations were carried out. The parameters used for the reported intensity calculations are set forth in Table 1. In this table P and S share the rhombohedral positions $x x x$ and $\bar{x} \bar{x} \bar{x}$, leaving the structure in space group $R \overline{3} m$. If they did not share the two positions but each occupied one of them the symmetry centers would be lost and the space group would be $R 3 m$.

Table. 1. Parameters and Interatomic Distances for Svanbergrte

Table 2. Observed and Calculated Spacings and Intensities for Lines
in a Powder Diffraction Pattern of Svanbergite

Calculated from E. Ygberg's Cell Dimensions				Calculated Intensity			Quoted from E. Ygberg's Table 2				Table 5
$h k i l$	$h k l$	$\sin ^{2} \theta_{\text {cu }}$	$d_{h k l}$	Trial	Trial B	Trial C	I	$\begin{aligned} & \sin ^{2} \theta \\ & \text { (obs.) } \end{aligned}$	$\begin{aligned} & \sin ^{2} \theta \\ & \text { (calc.) } \end{aligned}$	$H I \bar{K} L$	$d_{h k l}$
1011	100	. 0184	5.67	300	321	264			$\{.0181$	$10 \overline{1} 1$	5.73
0003	111	. 0189	5.60	22	1	3	S	. 018	\{. 0189	0003	
0112	110	. 0247	4.90	0	9	28	w-	. 024	. 0244	1012	4.96
$11 \overline{2} 0$	101	. 0489	3.48	171	189	189 \}	s	. 048	. 0480	$11 \overline{2} 0$	3.51
1014	211	. 0499	3.44	61	70	561	s	. 048			
0221	$11 \overline{1}$. 0675	2.965	54	40	37)	s+	. 067	. 0661	2021	2.97
$11 \overline{2} 3$	210	. 0678	2.955	725	749	750)					
0115	221	. 0688	2.930	2	4	9					
2022	200	. 0736	2.835	22	41	46	w	. 077	. 0756	0006	2.77
0006	222	. 0756	2.800	13	60	38)	W				
0224	220	. 0988	2.435	144	70	102	w \dagger	\dagger	\dagger	\dagger	2.47
2131	201	. 1162	2.260	71	92	143					
$20 \overline{2} 5$	311	. 1177	2.250	72	73	72	s+	. 120	. 1204	$21 \overline{3} 2$	2.22
1017	322	.1193	2.230	203	217	176					
$12 \overline{3} 2$	211	. 1225	2.198	77	90	$70)$					
1126	321	. 1245	2.181	41	23	17					
$30 \frac{3}{3} 0$	211	. 1467	2.010	16	14	14)				$30 \overline{3} 0$	2.02
$21 \overline{3} 4$	310	.1477	2.008	12	34	17.	w	. 145	$\{.1456$	$21 \overline{3} 4$	2.02
0118	332	. 1507	1.982	15	22	56					
$03 \overline{3} 3$	$22 \overline{1}$ 300	. 1656	1.891	198	211 24	273 24.				$3133 \ddagger$	1.91
$30 \overline{3} 3$ $12 \overline{3} 5$	300 320	. 1656	1.891 1.883	19	24 7	24, 3 ,	s	. 163	\{. 1645	$21 \overline{3} 5$	1.91
$02 \overline{2} 7$	331	. 1681	1.877	1	1	4					
0009	333	. 1701	1.866	2	16	11					1.75
$22 \overline{40}$	$20 \overline{2}$. 1956	1.740	235	215	215	s	. 193	. 1920	2240*	1.71
2028	422	. 1996	1.723	43	19	21	w -	. 202	. 2004	$2242 *$	
1341	$21 \overline{2}$. 2140	1.663	13	12	11					
2243	311	. 2145	1.662	12	1	1					
$21 \overline{3} 7$	421	. 2170	1.652			37					
1129	432	. 2190	1.645			10				3036	1.64
3142 0326	301	. 2203	1.640			0 5	w	. 220	$\{.2210$	000.10*	1.64
033 30 10	$\left.\begin{array}{l}330 \\ 411\end{array}\right\}$. 2223	1.633			11)					
${ }^{301} \cdot 10$	411	. 2263	1.618			4	w-	. 230	. 2269	3143*	1.60
$13 \overline{4} 4$	$32 \overline{1}$. 2455	1.553			2					
1238	431	. 2485	1.543			0					
4041	311	. 2629	1.501			0					
3145	410	. 2644	1.496			26					1.49
$01 \overline{1} \cdot 11$	443	. 2684	1.486			24 \}	w	. 265	. 2644	4042	1.49
$04 \overline{4} 2$	$22 \overline{2}$. 2692	1.483			15.					
$22 \overline{4} 6$	420	. 2712	1.478			68	w	. 276	.2749 .2821	2139**	$\begin{aligned} & 1.40 \\ & 1.45 \end{aligned}$
$02 \overline{2} \cdot 10$	442	. 2752	1.466			108	m	. 281	. 2821	$213{ }^{*}$	1.45
000-12	444	. 2924	1.423			4 29			. 2949	$22 \overline{4} 7^{*}$	1.41
4044	400	. 2944	1.418 1.378			23	W	. 295	. 2949	224	
3251	302	. 3118	1.378			23 0					
0445	331	. 3133	1.375			0					
$13 \overline{4} 7$	430	. 3148	1.372			68	w	. 316	. 3148	$32 \overline{5} 2$	1.37
$033 \overline{3} 9$	441	. 3168	1.367			${ }^{3} 1$	w				
3039	$522)$. 3168	1.367			21					
2352	$31 \overline{2}$. 3181	1.365			1)					
$202 \cdot 11$	533	. 3183	1.364			1					
$21 \overline{3} \cdot 10$	532	. 3251	1.350			19				$41 \overline{5} 0$	1.32
4150	312	. 3423	1.316			28	w-	. 337	. 3360	4150	1.32
3254	411	. 3433	1.314			7					
3148	521	. 3463	1.308			19					

[^2]Since S^{+6} and P^{+5} have practically the same scattering power discrimination by x-ray diffraction is not feasible.

Intensity calculations were made by the well known formula

$$
\mathrm{I}_{\mathrm{oalo}} \sim \dot{\mathrm{~J}} \cdot \mathrm{~F}^{2} \cdot \frac{1+\cos ^{2} \theta}{\sin ^{2} \theta \cdot \cos \theta}
$$

using ionic scattering factors from the ITDCS for all ions except Sr^{+2}. For Sr the atomic scattering factors of the ITDCS were slightly modified for low angles to correspond to expected ionic scattering. For the sake of simplicity intensity calculations were made from the rhombohedral parameters. In Table 1 all parameters are given for both cells.

In Table 2 the results of three series of intensity calculations are shown together with rhombohedral and hexagonal indices, calculated spacings and Ygberg's data from two of his tables for the range here covered. It can be seen that trial C for intensities best accounts for the observations, especially on 111, 200 and 222, 220 and on 422. Accordingly, calculations for this trial were extended to the first 55 planes as an additional check. The margin for choice between trials B and C is, however, not large. Comparison of calculations with observations further shows that even a number of lines to which Ygberg assigned permissible indices are to be attributed to other planes if svanbergite has an alunite structure. For instance, the strong line for spacing 2.97 to which he gave the indices $20 \overline{2} 1$ must be attributed largely if not entirely to $11 \overline{2} 3$.

In the range covered by calculations, the seven lines for which Ygberg gave indices that are non-rhombohedral or impossible have been explained as due to diffraction from planes in a rhombohedral lattice. In addition to these Ygberg also listed $32 \overline{5} 6\left(\sin ^{2} \theta(\mathrm{obs})=.378\right)$. No doubt this observation as well might be accounted for by rhombohedral indices but present calculations were not carried so far. It may now be asserted with greater assurance that svanbergite does indeed have a rhombohedral lattice.

As will be seen more clearly in the discussion of woodhouseite, the intensity designations w and s, as used by Ygberg each cover a wide range of intensities, whereas the designation m is but sparingly used by him. Under these circumstances no close determination of the parameters is possible but the fit of calculated intensities for trial C and reported intensities over a rather large range shows that a fair approximation has been reached.

Rhombohedral Indexing

Since indices of planes and coordinates of atoms in this paper are referred to both hexagonal and rhombohedral cells it is necessary to make a statement about the conventions adopted. The writer has not
followed the ITDCS in these matters. It is pertinent to quote Donnay ${ }^{4}$ in this connection. He has written:-"If the lattice is rhombohedral (hexagonal- R), and is referred to the smallest R-centered cell, there are still two alternatives. The dominant rhombohedron may have a face sloping forward, in which case it is symbolized $\{10 \overline{1} 1\}$, or backward, in which case it is indexed $\{01 \overline{1} 1\}$. The second setting may be obtained from the first by a 180° (or 60°) rotation about the c axis. In the first setting, the cell (which is here a triple cell) has its additional nodes at $\frac{2}{3} \frac{1}{3} \frac{1}{3}$ and $\frac{1}{3} \frac{2}{3} \frac{2}{3}$; in the second setting, at $\frac{2}{3} \frac{1}{3} \frac{2}{3}$ and $\frac{1}{2} \frac{2}{3} \frac{1}{3}$. The extinction criterion of the faces ($h k \bar{\imath} l$) is, in the first setting $2 h+k+l=3 n$ or $h+i+l=3 n$; in the second setting $2 h+k-l=3 n$ or $h+i-l=3 n$. It is unfortunate that the International Tables should recommend the adoption of the second setting. The dominant rhombohedron has always been indexed $\{10 \overline{1} 1\}$ by mineralogists."

With all this the writer is in agreement except that the sign before the i in the alternative forms of the criteria should be negative in each case. ${ }^{5}$

This matter is taken up at two points in the ITDCS. The transformation γ given on page 74 in volume I corresponds to Donnay's "first setting," whereas in volume II under "Indices Transformations," page 471 , both settings are described. In the space group tables the second setting is used consistently as indicated by Donnay.

Under "Rhombohedral centering" a transformation corresponding to the "first setting" is discussed by Buerger" and an equivalent transformation formula [88] is given in the new seventh edition of Dana's System of Mineralogy. ${ }^{7}$ Neither of these authorities hint at the possibility of a "second setting."

The writer follows mineralogical usage in making the transformation according to the "first setting." Then (1011) becomes (100) and the criteria for hexagonal indices which correspond to planes in the rhombohedral lattice may be taken to be:

$$
\begin{aligned}
h-i+l & =3 n, \\
k-h+l & =3 n \\
\text { or } i-k+l & =3 n .
\end{aligned}
$$

[^3]These are also the transformation formulas and may be applied to the correlated indices of tables 2,5 and 7 in this paper.

The relations of the two lattices thus chosen may be seen from Fig. 1 showing that the coordinates of atoms which give rhombohedral centering to the hexagonal lattice are $\frac{2}{3}, \frac{1}{3},-, \frac{1}{3}$, and $\frac{1}{3}, \frac{2}{3},-, \frac{2}{3}$.

Woodhouseite

Thanks to the courtesy of Professor C. D. Woodhouse, Santa Barbara College, University of California, Santa Barbara, California, the writer was able to obtain specimens of woodhouseite from the type locality. The specimens consist of small clusters of woodhouseite crystals a millimeter or two in diameter implanted on much larger quartz crystals. It proved quite easy to detach uncontaminated material suitable for density determination or x-ray powder study.

Table 3. Lattice Dimensions and Density of Woodhouseite

	Hexagonal axes			Rhombohedral axes		Density	
	a_{h}	c_{h}	c / a		$\angle \alpha$	$d_{\text {obs. }}$	$d_{\text {coale }}$.
Lemmon	-	-	$\begin{aligned} & 1.170 \\ & \left(\frac{1}{2} \times 2.340\right) \end{aligned}$			3.012	-
Ygberg	6.93	16.3	2.352	6.75	$61^{\circ} 75^{*}$	-003	3.024
Pabst	6.961	16.27	2.338	6.75	$62^{\circ} 4^{\prime}$	3.003	$3.003 \dagger$

[^4]If my dimensions for the woodhouseite cell are rounded off to three significant figures, like Ygberg's, they become 6.96 and 16.3. This leaves us with a correction for a_{0} and so it may be well to state precisely the basis for this change. The cell dimensions were determined from 16 lines free from disturbing coincidences in the powder pattern. They are indicated by asterisks in Table 5. From these lines one obtains 14 values for each of the necessary constants. The average values are:-

$$
\sin ^{2} \theta_{10010}=0.016296 \quad \text { and } \quad \sin ^{2} \theta_{0001}=0.002237
$$

The standard errors,

$$
S_{\hat{x}}=\sqrt{\frac{z(\mathrm{X}-\overline{\mathrm{x}})^{2}}{n(n-1)^{2}}}
$$

are respectively 0.00000615 and 0.00000335 . They correspond to 0.0015 kX and 0.013 kX . The maximum errors calculated from the maximum values of ($\mathrm{X}-\overline{\mathrm{x}}$) correspond to 0.012 kX and 0.10 kX , respectively. They may be assumed to be well beyond the limits of probable error. A further check was obtained from the alunite pattern discussed below. Lattice dimensions obtained from this showed no significant difference from those given by Hendricks.

Table 4. Parameters and Interatomic Distances for Woodhouseite

Parameters							
$\begin{gathered} \mathrm{Rh} \\ \text { Ca } 1:(a) 000 \end{gathered}$		$\begin{gathered} \text { Hex } \\ 3:(a) 000 \end{gathered}$	$\begin{gathered} \mathrm{Rh} \\ \text { A1 } 3:(d) \frac{1}{2} 00 \end{gathered}$			$\stackrel{\text { Hex }}{\text { 9: (d) } 1 / 61 / 61 / 6}$	
	2: (c) $x x x$	6: (c) $00 z$			$z x x$	18:	$x \bar{x} z$
$\begin{aligned} & \mathrm{S}, \mathrm{P} \\ & \mathrm{O}_{1} \end{aligned}$	$\begin{aligned} & x \\ & .31 \\ & .405 \end{aligned}$	$\begin{aligned} & z \\ & .31 \\ & .405 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{OH} \end{aligned}$	x .16 .27	z .52 -.12	x .12 -.13	$\begin{gathered} z \\ .28 \\ .14 \end{gathered}$
$\begin{aligned} & (\mathrm{S}, \mathrm{P})-\mathrm{O}=1.53 \\ & (\mathrm{~S}, \mathrm{P})-\mathrm{O}_{1}=1.55 \end{aligned}$			tomi $\mathrm{O}-\mathrm{O}$ $\mathrm{O}_{1}-\mathrm{O}$ -OH -OH	$\begin{aligned} & \text { ances } \\ & 51 \\ & 50 \\ & 69 \\ & 71 \end{aligned}$		$\begin{array}{r} \mathrm{Ca}-\mathrm{O}= \\ \mathrm{Ca}-\mathrm{OH}= \\ \mathrm{Al}-\mathrm{O}= \\ \mathrm{Al}-\mathrm{OH}= \end{array}$	

Parameters were found for woodhouseite in the same manner as described for svanbergite. Several sets of intensity calculations were made with various parameters. In Table 4 are given only the parameters finally chosen together with the corresponding interatomic distances. These are
in close accord with accepted values but no great weight should be laid on this since the parameters are stated only to two figures for most atoms and a small shift may make substantial changes in interatomic distances. For instance, changing z for O_{1} by only 0.005 would change the $\mathrm{S}-\mathrm{O}_{1}$ distance by a little more than 0.08 kX .

Table 5 shows the observed and calculated spacings for woodhouseite down to 1.293 kX . The observed intensities for the new woodhouseite pattern are recorded by the heights of peaks on a photometer curve. Except that the heights of the first two peaks which lie within the central halo of fog seem low (in the direct estimate of intensities made before the photometer curve was run they were assigned the same value as that of the third line) the agreement with calculated intensities is rather satisfactory, being just as good as that shown for alunite in Table 7. Even so, no high accuracy is claimed for the adopted parameters.

Records of powder patterns of woodhouseite have previously been published by Ygberg ${ }^{9}$ and by McConnell. ${ }^{10}$ The latter gave no cell dimensions; neither gave indices. Their data are included in Table 5. The record is carried a little farther in Table $5 a$ in which are given lines of woodhouseite patterns between 1.29 , the limit of intensity calculations, and 0.90 , the line of smallest spacing recorded by Ygberg. McConnell's published record does not extend into this region. Measurement of my pattern was not carried beyond 0.90 kX .

Though there is substantial agreement among the several patterns some notable differences occur. The new pattern shows a few more lines. In the indexed part these are all satisfactorily accounted for except the weak line 2.56. Ygberg's pattern shows a few marked departures in spacing, for instance for his 2.99 line, whereas McConnell records two or more lines not observed by the writer and not explained by the supposed structure of woodhouseite. These discrepancies can hardly be explained by differences in material since we all worked with woodhouseite from Inyo County, the only known locality.

The structure of woodhouseite is shown in section in Fig. 1. Since all atoms lie in symmetry planes this may be considered to be a full representation of the structure. In the diagram all atoms within one rhombohedral cell are shown in the side view, whereas only atoms at the corners of such a cell are shown in the top view. The hexagonal parameters of Table 4 must be taken with x along the a_{1} and a_{3} axes to give correct positions corresponding to the labelled atoms or ions in the drawing.

[^5]Table 5. Calculated and Observed Spacings and Intensities in Powder
Diffraction Patterns of Woodhouseite

* Lines used to determine cell dimensions.
\dagger Photometer curve shows common peak for two lines whose intensities were estimated at 4 and 8 (intensity of strongest line being 10), in agreement with calculated intensities.
\ddagger Observed intensities given by heights of peaks on photometer curve.
Unidentified line, probably due to unknown contaminant, not quartz.
β lines.

Table 5a. Observed Lines in Woodhouseite Powder Diffraction Patterns for the Interval 1.29 to 0.90 kX

Pabst		Ygberg		Pabst		Ygberg	
I	$d_{h k l}$	I	$d_{h k l}$	I	$d_{l k l}$	I	$d_{k k t}$
4*	1.282	m	1.27	$\{2$	1.036		
1	1.262			2	1.031		
2	1.225			\{3	1.007		
5	1.192	m	1.19	\{ 3	1.003	w	1.00
4	1.164	w+	1.16	2-	0.962		
3-	1.138 -	w	1.13	5	0.953	w+	0.95
2	1.124			4	0.945	w	0.94
2	1.106			5	0.935	w+	0.93
4	1.098	w-	1.10	2-	0.930		
4	1.078	w+	1.07	$3+$	0.913	w-	0.91
2+	1.067			5	0.903	w	0.90
$2+$	1.056						

* Intensities given by arbitrary serial numbers from 1 for very faint lines to 10 for the strongest line.

Fig. 1. Atomic arrangement of woodhouseite. Dashed lines in both views outline rhombohedral unit cell. Heavy full lines outline hexagonal unit cell in top view only.

Alunite

Alunite from Tolfa, Italy, taken from the collections of the Department of Geological Sciences, University of California, Berkeley, originally obtained through Ward's Natural Science Establishment, was used for a powder pattern. This may be considered to be from the type locality since the mineral was known at Tolfa from early times, before it received its present name.

The density was determined with the Berman balance on three small fragments of this material consisting of compact fine-grained crystal aggregates. Single crystals were not available. The resulting value, 2.70 is slightly lower than the observed and calculated values, 2.75 and 2.80 , given by Hendricks, ${ }^{11}$ as might be expected.

The dimensions of the hexagonal cell were determined from a powder pattern taken under just the same conditions as that of woodhouseite. The results checked closely with the dimensions given by Hendricks. These, together with the constants calculated for the corresponding rhombohedral cell, are:-

a_{h}	c_{h}	c_{h} / a_{h}	$a_{r h}$	α
6.96	17.35	2.492	7.058	$59^{\circ} 5^{\prime}$.

The parameters found for alunite by Hendricks are given in Table 6 in the same form in which parameters have been given for svanbergite

Table 6. Parameters Used in Intensity Calculation for Alunite.
Adapted from Hendricks

$\begin{gathered} \mathrm{Rh} \\ \mathrm{~K} 1:(a) 000 \end{gathered}$		$\begin{gathered} \text { Hex } \\ 3:(a) 000 \end{gathered}$	$\begin{gathered} \mathrm{Rh} \\ \text { Al } 3:(d) \frac{1}{2} 00 \end{gathered}$			$\begin{aligned} & \text { Hex } \\ & 9 \dagger \text { (d) } 1 / 6 \overline{1 / 6} 1 / 6 \end{aligned}$	
	2: (c) $x x x$	6: (c) $00 z$			$8 x x$	18:	$x \tilde{x}_{S}$
	x	z		x	z	x	z
S	. 305	. 305	0	. 157	. 512	$-.213$	-.058+
O_{1}	. 393	. 393 *	OH	. 276	$-.174$	$-.150$. 126

[^6]and woodhouseite. Using these parameters and the dimensions cited, the intensities and positions for the first twenty five possible lines in an alunite powder pattern were calculated. Table 7 shows the results of

Table 7. Comparison of Calculated and Observed Spactngs and Intensities for Aul Posstble Lines in an Alunite Powder Diffraction Pattern for which $d_{h b l}$ Is Greater than 1.69

Calculated				Observed \dagger (Pabst)		ASTM-ASXRED \ddagger					
				card 2155	card II-1459						
hkil	$h_{r} k_{r} l_{T}$	$d_{\text {hkl }}$	I			$d_{k k l}$	I	$d^{h k t}$	I	$d_{h k l}$	I
0003	111	5.783	1								
10 I 1	100	5.69	38	5.75	. 30	5.70	. 25	5.70	. 2		
0112	110	4.946	59	4.98	. 65	4.94	. 50	4.92	. 4		
								3.97	. $\frac{1}{2}$		
1014	211	3.52	3								
$11 \overline{2} 0$	$10 \overline{1}$	3.481	62	3.50	1.05	3.49	. 41	3.50	. 2		
				3.33+*		3.34	. 03				
0115	221	3.01	$16)$								
$11 \overline{2} 3$	210	2.985	424 \}	$3.00-$	2.80	2.98	1.00	2.96	1.0		
0221	111	2.97	138								
0006	222	2.892	23	$2.89+$. 55	2.88	. 06	2.85	. $\frac{1}{2}$		
2022	200	2.848	0								
$02 \overline{2} 4$	220	2.474	54	$2.48+$. 65	2.47	. 09	2.47	. ${ }^{\frac{1}{4}}$		
1017	322	2.292	148	$2.29+$	2.40	2.29	. 50	.			
2025	311	2.276	$28)$								
2131	201	2.259	14,	2.26	. 95						
$11 \overline{2} 6$	321	2.227	5)	$2.21+$				2.24	. 5		
$12 \overline{3} 2$	21 I	2.204	35)	$2.21+$. 25	2.20	. 19	+			
				$2.11+*$		2.13	. 03				
$01 \overline{1} 8$	332	2.042	12	2.04-	. 20	2.02	. 03				
$21 \overline{3} 4$	310	2.018	0								
$30 \overline{3} 0$	211	2.010	2								
0009	333	1.928	9								
0227	331	1.914	18)								
$12 \overline{3} 5$	320	1.904	0	$1.90+$		1.893	. 59	1.89	. 5		
$03 \overline{3} 3$	$221)$	1.897	133	$1.90+$	3.30	1.893	. 59	1.89	. 5		
$3 \mathrm{G} \overline{3} 3$	300 f	1.897	4)								
$22 \overline{4} 0$	202	1.740	145	1.750	2.90	1.74	. 50	1.735	. 5		
$20 \overline{28}$	422	1.699	1								

[^7]these calculations together with observations on the powder pattern. Included in the table are also parts of the records of alunite patterns that are available on ASTM-ASXRED cards.

The observed lines include several that do not correspond to calculated spacings. When the lines at 3.33 and 2.11 kX were noted on the pattern of alunite from Tolfa, Italy, they were at first suspected of being due to quartz contamination. Quartz has strong lines at 3.35 and 2.11. ${ }^{12}$ Microscopic examination, however, revealed no quartz in the sample and it proved to be completely soluble upon prolonged treatment with sulphuric acid. These two lines are $\mathrm{Cu}-\mathrm{K}_{\beta}$ lines corresponding to $11 \overline{2} 3$ and $03 \overline{3} 3$, the strongest α lines observed. Such $\mathrm{Cu} \mathrm{K}_{\beta}$ lines ought to simulate $\mathrm{Cu} \mathrm{K}_{\alpha}$ lines for spacings 3.315 and 2.119 , very close to the observed positions.

On card 2155 lines are also recorded near the positions just discussed, namely at 3.34 and 2.13. It may be assumed that this pattern, from the first ASTM set, was made with Mo radiation. Due to the different ratio of β to α wave lengths for this radiation the β lines for $11 \overline{2} 3$ and $03 \overline{3} 3$ would simulate α lines corresponding to spacings 3.382 and 2.152 respectively, in this case. Thus it seems probable that the alunite used for the pattern of ASTM card 2155 carried a little quartz contamination, though one might again attribute the lines to β radiation if one allowed about a one per cent error in the reporting of the positions of these particular lines.

No explanation has been found for the 3.97 line on card II-1459.
${ }^{12}$ ASTM-ASXRED card II-1007.

[^0]: ${ }^{1}$ Ygberg, Erik R., Svanbergite from Horrsjöfberg: Arkiv för Kemi, Mineralogi och Geologi, 20A, no. 4, 1-17 (1945).
 ${ }^{2}$ Hendricks, S. B., The crystal structure of alunite and the jarosites: Am. Mineral., 22, 773-784 (1937).

[^1]: ${ }^{3}$ The group $R \overline{3} m$ arises from $R 3 m$ by addition of a center of symmetry at 000 . From Hendricks' table of parameters it can be seen that all atoms in his structure are centrosymmetrically disposed in pairs on opposite sides of K at 000 .

[^2]: * Indices thus marked denote planes not conforming to rhombohedral criteria.
 \dagger Intensity and spacing for this line taken from Ygberg's Table 5. It is omitted in his Table 2.
 $\$$ Impossible indices.

[^3]: ${ }^{4}$ Donnay, J. D. H., Rules for the conventional orientation of crystals: Am. Mineral., 28, 313-328 (1943).
 ${ }^{5}$ This slip corresponds to the statement found at the foot of page 77 in Rogers' "Introduction to the study of minerals," 3rd. ed. 1937, that $h+k=i$. Though this is stated as a conclusion from a detailed proof it is incorrect.
 ${ }^{6}$ Buerger, M. J., X-ray Crystallography, New York, (1942), pp. 68-70.
 ${ }^{7}$ Palache, Berman and Frondel, Dana's System of Mineralogy, 7 th ed., vol. I, New York (1944), p. 25. This is taken from C. W. Wolfe's "Crystallographic Procedures," Am. Mineral., 26, 55-91 (1941), where the transformation here referred to is stated as formula [94].

[^4]: * The value given for α here is quoted from Ygberg. This was obviously a misprint. The value corresponding to his dimensions for the hexagonal cell would be $61^{\circ} 48^{\prime}$.
 \dagger The calculated density given at this point is based on the assumption of a cell content corresponding to the ideal formula. The analysis reported by Lemmon, however, shows $1.00 \% \mathrm{BaO}$ and other contaminants. It must be assumed that these constituents enter into the lattice. On this basis the density would be 3.029 using my dimensions or 3.051 using Ygberg's dimensions.

 The density of woodhouseite was determined by the Berman balance using toluene of density 0.862 at $26^{\circ} \mathrm{C}$. The lattice dimensions were determined from a powder pattern made in a camera of 360 mm . circumference with copper radiation and nickel filter. The wave length of the unresolved copper K_{α} radiation was taken to be 1.539 kX . In calculating density from cell content the value of Avogadro's number was taken as 60.594×10^{22} for consistency with the kX units. ${ }^{8}$ The results of these measurements and calculations are given in Table 3 together with earlier values reported by Lemmon and Ygberg.
 ${ }^{8}$ Schlecht, Wm. G., Calculation of density from x-ray data: Am. Mineral., 29, 108110 (1944).

[^5]: ${ }^{9}$ Op. cit. p. 15.
 ${ }^{10}$ McConnell, Duncan, X-ray data on several phosphates: Am. J. Sci., 240, 649-657 (1942).

[^6]: * The O_{1} parameter is given by Hendricks as .06 . This is obviously a slip as it would make the $\mathrm{K}-\mathrm{O}_{1}$ distance only 1.04 . The value given in the table herewith is obtained by adding . 333 to the value given by Hendricks (op. cit., p. 777). From his figure 2 it is clear that he intended the value bere given.
 \dagger There are 9 aluminums in the hexagonal unit, not 3 as suggested by Hendricks' tabuJation (op. cit., p. 777).
 \ddagger The hexagonal parameters for O here given are the same as tabulated by Hendricks. By adding .333 to each it will be seen that these parameters are very close to those found for svanbergite and woodhouseite stated in Tables 1 and 4.
 ${ }^{11}$ Op. cil., p. 775.

[^7]: * β lines. See text.
 $\dagger \mathrm{Cu}$ radiation. Intensities given as heights of peaks on photometer curve. The calculated intensities are also for Cu radiation.
 \ddagger Presumably the patterns recorded on both ASTM cards were made with Mo radiation.

