The Crystal Structure of Maucherite $\left(\mathrm{Ni}_{11} \mathrm{As}_{8}\right)$

Michael E. Fleet
Department of Geology, University of Western Ontario, London, Ontario, Canada

Abstract

X -ray diffraction patterns of maucherite ($\mathrm{Ni}_{11} \mathrm{As}_{8}$) indicate the presence of a tetragonal supercell with $a=6.8724(4) \AA, c=21.821(1) \AA$, space group $P 4_{1} 2_{1} 2, Z=4$; the subcell is also tetragonal with $a^{\prime}=a / 2, c^{\prime}=c$, space group $14_{1} / a m d, Z=1$. The crystal structure has been determined using X-ray intensity data collected from a synthetic maucherite crystal on a fourcircle diffractometer and refined to an R value of 0.063 . The structure contains six non-equivalent Ni atoms per unit cell, five in square pyramidal coordination with As in equipoint position $8 b$ and one in a stretched octahedral coordination in equipoint position $4 a$. The As polyhedra form single chains of trigonal prisms arranged so that the prism faces contribute to the square pyramidal Ni sites. Alternate prisms share a face with a prism from an adjacent chain; the site which includes the shared face is vacant to account for the unusual stoichiometry of maucherite. Each Ni is coordinated to four or five neighboring Ni atoms with $\mathrm{Ni}-\mathrm{Ni}$ distances of $2.48 \AA$ to $2.87 \AA$. The shorter distances arise through shared pyramidal faces and shared As polyhedral prisms; the longer ones arise through shared pyramidal-octahedral faces and shared pyramidal edges. It is suggested that $3 d$ electron σ bonding between these related Ni atoms supplements the Ni-As σ bonds. The principal features of the maucherite structure have counterparts in the crystal structures of $\alpha-\mathrm{Ni}_{7} \mathrm{~S}_{\mathrm{s}}$ and millerite (NiS).

Introduction

Maucherite $\left(\mathrm{Ni}_{11} \mathrm{As}_{8}\right)$ is found associated with niccolite (NiAs), rammelsbergite (NiAs_{2}) and pararammelsbergite (NiAs_{2}) in nickel-cobalt-native silver deposits as exemplified at Eisleben, Thuringia, Germany (the type locality) and Cobalt, Ontario, Canada.

Most of the present crystallographic data on maucherite were obtained by Peacock (1940) who, confirming earlier work by Laves (1935), reported that single crystal X-ray diffraction patterns indicate a well-developed pseudocell (subcell) which is tetragonal with $a=3.42 \AA, c=21.83 \AA$ and space group $14_{1} /$ amd $\left(D_{4 n}{ }^{19}\right)$ but that the real unit cell, also tetragonal, is defined by a doubling of the a axis, giving $a=6.84 \AA, c=21.83 \AA$, space group $P 4_{1} 2_{1} 2\left(D_{4}{ }^{4}\right)$ or $P 4_{3} 2_{1} 2\left(D_{4}{ }^{8}\right)$. However, the reflections characteristic of the supercell are diffuse and smeared into $h k$ bands of continuous radiation (Peacock, 1942). On the basis of chemical analyses of several natural samples, Peacock (1940) established the composition as $\mathrm{Ni}_{11} \mathrm{As}_{8}$; small amounts of Co and S substitute for Ni and As respectively. A measured density of $8.00 \mathrm{gm} \mathrm{cm}^{-3}$ indicated $Z=$ 4, and Peacock argued that the structure must contain four vacancies in the Ni sites per unit cell.

Laves (1935) showed that a synthetic $\mathrm{Ni}_{3} \mathrm{As}_{2}$ composition was crystallographically equivalent to maucherite, but systematic phase chemistry on the binary system later indicated that the stability region of synthetic maucherite was very narrow and restricted to $\mathrm{Ni}_{11} \mathrm{As}_{8}$ (Heyding and Calvert, 1957). Yund (1961) confirmed the chemical and crystallographic equivalence of natural maucherite and the synthetic phase synthesized below $700^{\circ} \mathrm{C}$. X-ray powder diffraction patterns of the product quenched from above $700^{\circ} \mathrm{C}$ contain several additional reflections; however, a phase transition in the temperature range 650° to $800^{\circ} \mathrm{C}$ was not indicated by differential thermal analyses. $\mathrm{Ni}_{11} \mathrm{As}_{8}$ melts incongruently at $830^{\circ} \pm 5^{\circ} \mathrm{C}$ to niccolite plus liquid.

Experimental

A crystal structure determination on natural maucherite was not possible because of the diffuse nature of the superstructure reflections in all the specimens examined to date. Thus it was decided to attempt synthesis of a maucherite in which these reflections were sharp. Clearly, the existence of the diffuse reflections in the natural product indicates that maucherite attempts further long-range order at low temperatures, so that the synthetic material should be annealed at a temperature higher than that at which this long-range order is initiated but at or below $700^{\circ} \mathrm{C}$ to prevent the formation of the possible metastable phase reported by Yund (1961).

About 1.0 gm of $\mathrm{Ni}_{11} \mathrm{As}_{8}$ was synthesized by heating an appropriate mixture of purified Ni sponge, previously reduced with hydrogen at $900^{\circ} \mathrm{C}$, and As powder in an evacuated silica-glass tube placed in a horizontal tube furnace. Initially, the charge was heated at $795^{\circ} \mathrm{C}$ for 11 days to attempt complete reaction of the starting reactants, then annealed at $696^{\circ} \mathrm{C}$ for five days. However, the product contained NiAs and Ni in addition to $\mathrm{Ni}_{11} \mathrm{Ass}_{\text {s }}$. Homogenization was completed by preparing a second charge from the ground products of the first synthesis and heating this at $825^{\circ} \mathrm{C}$ for one day, and $790^{\circ} \mathrm{C}$ for six days, then annealing it at $692^{\circ} \mathrm{C}$ for three days. The charge was allowed to cool to room temperature in the furnace. The product of the synthesis was massive and in the form of a plug. This was crushed in a percussion mortar and fragments within the size range 0.01 mm to 0.2 mm in diameter were isolated by sieving. The material appeared homogeneous in polished section examination and the individual fragments were generally monocrystalline. The crystal fragment selected for study was bounded by plane surfaces, with a near-rhombic habit, and had a calculated volume of 0.1 $\times 10^{-6} \mathrm{~cm}^{3}$.

A preliminary single crystal study on a precession camera confirmed the fragment to be a single crystal with reflections characteristic of the supercell sharp and distinct. The existing crystallographic data on maucherite were confirmed also: the subcell is tetragonal with the systematic absences $h k l$ with $h+k+l \neq 2 n, h k 0$ with $h \neq 2 n$ and $h h l$ with $2 h+l \neq 4 n$, consistent with the space group $74_{1} /$ amd $\left(\mathrm{D}_{4}{ }^{18}\right)$, and the supercell is tetragonal with the systematic absences $00 l$ with $l \neq 4 n$ and $h 00$ with $h \neq 2 n$, consistent with the enantiomorphic space groups $P 4_{1} 2_{1} 2_{1}\left(D_{4}{ }^{4}\right)$ and $P 4_{3} 2_{1} 2\left(D_{4}{ }^{8}\right)$. The lattice parameters of the supercell, determined by least-squares refinement of 12 centered reflections measured on a four-circle diffractometer with Zr filtered $\operatorname{MoK} \alpha(\lambda=0.7107 \AA)$ radiation, are $a=$ $6.8724(4) \AA, c=21.821(1) \AA$. These data compare quite well with the parameters reported by Heyding and Calvert (1957; $a=6.868(4) ~ \AA, c=21.80(2) ~ \AA$) and Yund (1961; $a=6.867$ (2) $\AA, c=21.80(1) \AA$) for synthetic maucherite, both sets of data being determined from powder patterns.

The X-ray intensity data for the structure analysis were taken on a Picker facs 1 four-circle diffractometer system at the University of Western Ontario. All non-equivalent $h k l$ reflections with $2 \theta \leq 65^{\circ}$ were measured using a scintillation detector, Zr -filtered $\mathrm{MoK} \alpha(\lambda=0.7107 \AA$) radiation and the 2θ scan technique: 40 second stationary background counts, peak-base widths of $2.0^{\circ} 2 \theta$ (uncorrected for dispersion) and a scanning rate of 0.5° per minute. The resulting data were processed by a data correction routine which corrected for background, Lorentz and polarization effects, and absorption. Transmission factors for the absorption correction were calculated by the analytical method of de Meulenaer and Tompa (1965) using a value for the linear absorption coefficient of $463.5 \mathrm{~cm}^{-1}$. The crystal was oriented with the a-axis parallel to the ϕ axis. The calculated transmission factors varied from 0.14 for 017 to 0.20 for 021 . Standard deviations (σ) were calculated from the expression $\sigma=1 / 2\left[1 / L p T \cdot\left(\sigma_{p}{ }^{2}+\sigma_{b 1}{ }^{2}\right.\right.$ $\left.\left.+\sigma_{\mathrm{b} 2}{ }^{2}+(0.02 I)^{2}\right) / I\right]^{1 / 2}$, where $L p$ is the Lorentz-polar-
ization factor, T is the transmission factor, $\sigma_{p}, \sigma_{b 1}$ and $\sigma_{b 2}$ are, respectively, the standard deviations for the counting rates of the peak and backgrounds and I is the backgroundcorrected peak intensity. Each reflection whose intensity was less than the associated background plus 3σ was given zero intensity. The final data list contained 1178 reflections of which 713 were 'unobserved.' The large number of 'unobserved' reflections is attributed to the manner in which the superstructure is developed from the substructure; there is, for example, a structural extinction for $h k l$ with $h \neq 2 n$ and $h+k=2 n$.

Crystal Structure Investigation

The true cell of maucherite is defined by a noncentrosymmetric superstructure. The crystal structure investigation was initiated by a determination of the structure of the subcell, in the expectation that the positional data for the disordered basic structure could be expanded into an ordered arrangement which would account for the X-ray diffraction intensity distribution of the supercell.

The crystal structure of the subcell is centrosymmetric; the space group $14_{1} /$ amd being uniquely defined by the systematic absences. The structure factors were converted to normalized structure factors (E 's) using program FAME (R. B. K. Dewar, Illinois Institute of Technology, Chicago) and the phases of those normalized structure factors with $E \geq 1.5$ were assigned by a reiterative application of Sayre's equation using program REL1 (adapted from Long, 1965, and further modified by the author to accommodate space group $I 4_{1} /$ amd $)$. Atomic positions taken from E maps, prepared from the solution with the largest consistency index (0.81), lead directly to a value of the conventional residual index of 0.30 .

The structure was improved following an F_{0} Fourier analysis and refined further by full-matrix, least-squares refinement using program RFINE (L. Finger, Geophysical Laboratory, Washington), which minimizes the function $\Sigma w\left(\left|F_{0}\right|-\left|F_{c}\right|\right)^{2}$, where $w=1 / \sigma^{2}, F_{0}$ is the observed and F_{c} the calculated structure factor, and calculates a conventional residual index, $\Sigma\left|\left|F_{0}\right|-\left|F_{c}\right|\right| / \Sigma\left|F_{0}\right|$ and a weighted residual index, $\left[\Sigma w\left(\left|F_{0}\right|-\left|F_{c}\right|\right)^{2} / \Sigma w F_{0}^{2}\right]^{1 / 2}$. The scattering curves for Ni^{2+} and As were taken from Cromer and Mann (1968) and real and imaginary components of the anomalous dispersion coefficients for Ni and As were from Cromer (1965). The refinement converged, giving values of the conventional and weighted residual indices of 0.047 and 0.053 ; the final positional and isotropic thermal parameters are given in Table 1.

The unit cell content of the subcell is $\mathrm{Ni}_{11} \mathrm{As}_{8}$. The

Fig. 1. Stereoscopic view of the crystal structure of maucherite; Ni : small full circles. As: large open circles.
structure analysis has shown that four As are ordered in the $\mathrm{As}(1)$ sites and that the remaining four As are disordered among the As(2) sites, with an occupancy of 0.5 . All of the Ni are in disordered positions, with eight Ni in $\mathrm{Ni}(3)$ sites, occupancy 0.5 , two Ni in $\mathrm{Ni}(1)$ sites, occupancy 0.25 , and one Ni in $\mathrm{Ni}(2)$ sites, occupancy 0.25 .

The crystal structure of the superstructure was developed by expanding the positional data of the subcell, with a suitable change in origin, to conform to the non-centrosymmetric space group $P 4_{1} 2_{1} 2$. Initially, several trial structures giving reasonable Ni coordinations with unit site occupancies were attempted. Comparison of these resulted in a set of ordered sites which satisfied the general features of the diffraction intensity distribution of the supercell. The agreement between the observed and calculated structure factors was improved following analysis of

Table 1. Positional and Thermal Parameter for Subcell*
table 1. posittonal and thermal parameters for subcell*

Site	Equipoint position	Site occupancy	x	y	z	B
$\mathrm{Ni}(1)$	8 e	0.25	0	$3 / 4$	0.1076 (6)	0.64(17)
Ni (2)	4 a	0.25	0	3/4	1/8	0.98 (39)
Ni (3)	16 h	0.5	0	0.1292(9)	0.2033 (1)	0.44(5)
As(1)	4b	1.0	0	1/4	3/8	0.46 (5)
As(2)	8 e	0.5	0	1/4	0.9980 (2)	0.39 (6)

*Estimated standard deviations (in parentheses) refer to $_{\text {to }}$ the last decimal place cited. Thus 0.64 (17) means an esd of 0.17 whereas $0.1076(6)$ indicates an esd of 0.0006 .
F_{0} Fourier maps. These ordered sites and the subcell sites they are related to are given in Table 2. The superstructure contains six non-equivalent Ni atoms per unit cell of which five, $\mathrm{Ni}(1), \mathrm{Ni}(3)$, $\mathrm{N}(4), \mathrm{N}(5)$ and $\mathrm{Ni}(6)$ in $8 b$ equipoint positions, are in square pyramidal coordination with As, and one, $\mathrm{Ni}(2)$ in $4 a$, is in a stretched octahedral coordination with As (Fig. 1). The As polyhedra form single chains of trigonal prisms arranged so that the prism faces contribute to the square pyramidal Ni sites (Fig. 2).

The positional and thermal parameters were refined using program rfine. Initially, constraints were added to relate the parameters of $\mathrm{Ni}(4), \mathrm{Ni}(5)$, and $\mathrm{Ni}(6)$ to those of $\mathrm{Ni}(3)$, of $\mathrm{As}(2)$ and $\mathrm{As}(3)$ to

Table 2. Approximate Positional Parameters for Maucherite
tabie 2. approximate positional parameters for maycherite

Site	Equivalent subcell site	Equipoint position	x	y	z
$\mathrm{Ni}(1)$	Ni (1)	8b	1/8	3/8	0.269
$\mathrm{Ni}(2)$	$\mathrm{Ni}(2)$	4 a	3/8	3/8	0
$\mathrm{Ni}(3)$	Ni(3)	8 b	1/8	0.565	0.172
Ni(4)	N1(3)	8b	5/8	0.565	0.172
Ni(5)	Ni(3)	8b	3/8	0.685	0.078
$\mathrm{Ni}(6)$	$\mathrm{Ni}(3)$	8 b	7/8	0.685	0.078
As (1)	As (1)	4 a	1/8	1/8	0
As(2)	As(1)	4 a	5/8	5/8	
As(3)	As (1)	8 b	5/8	1/8	0.0
As(4)	As(2)	8b	7/8	3/8	0.123
As(5)	As(2)	8b	1/8	7/8	0.127

Fig. 2. Intersecting chains of trigonal prisms of As atoms in the maucherite structure; Ni : small full circles.
those of $\mathrm{As}(1)$, and of $\mathrm{As}(5)$ to those of $\mathrm{As}(4)$ (Table 2). The values of the conventional and weighted residual indices thus obtained for isotropic thermal motion are 0.130 and 0.098 respectively. The refinement was continued by removing the inter-site positional constraints and finally converged on values of the conventional and weighted residual indices of 0.078 and 0.063 respectively. Convergence was assumed when the changes to the positional parameters were in the sixth places and the changes in the thermal parameters were in the fifth places and the ratios of the changes in the parameters to the errors in the parameters were less than 0.005 . The positional and isotropic thermal parameters are given in Table 3, and the observed and calculated structure factors are given in Table 4. The isotropic thermal parameters were constrained as in the initial stage of the refinement. In unconstrained refinement

Table 3. Refined Positional and Thermal Parameters for Maucherite*

Site	x	y	z	B
$\mathrm{Ni}(1)$	$0.125(2)$	$0.373(2)$	$0.2686(3)$	$0.66(9)$
$\mathrm{Ni}(2)$	$3 / 8$	$3 / 8$	0	$0.43(13)$
Ni(3)	$0.120(3)$	$0.569(2)$	$0.1734(4)$	$0.35(4)$
$\mathrm{Ni}(4)$	$0.608(2)$	$0.562(2)$	$0.1710(5)$	$0.35(4)$
$\mathrm{Ni}(5)$	$0.372(3)$	$0.683(2)$	$0.0805(4)$	$0.35(4)$
$\mathrm{Ni}(6)$	$0.871(3)$	$0.690(2)$	$0.0770(4)$	$0.35(4)$
As(1)	$0.120(2)$	$0.120(2)$	0	$0.43(5)$
As(2)	$0.635(2)$	$0.635(2)$	0	$0.43(5)$
As(3)	$0.635(2)$	$0.129(2)$	$0.0004(2)$	$0.43(5)$
As(4)	$0.877(2)$	$0.382(2)$	$0.1250(2)$	$0.32(5)$
As(5)	$0.121(2)$	$0.869(2)$	$0.1289(2)$	$0.32(5)$
	*Standard deviations in parentheses			

the thermal parameter of $\mathrm{Ni}(3)$ and $\mathrm{Ni}(6)$ refined to negative values. Attempts at constrained anisotropic refinement resulted in negative B_{33} parameters for $\mathrm{Ni}(3)$ and $\mathrm{Ni}(6)$. Furthermore, the motions of the remaining atoms were virtually isotropic and the reductions in the residual indices were not significant. The correlation coefficients for those positional parameters related through common subcell sites are given in Table 5 and indicate a high interdependency for these parameters.

Discussion

The crystal structure of maucherite has a substructure of As polyhedra in the form of single chains of trigonal prisms arranged so that alternate prisms share a face with a prism from an adjacent chain (Fig. 2). The shared faces lie in planes normal to the c-axis at $z=0,1 / 4,1 / 2$ and $3 / 4$. The 44 Ni atoms per unit cell are accommodated in six non-equivalent positions, five in square pyramidal coordination with As and one in a stretched octahedral coordination with As. There are 40 unshared prism faces of the As polyhedra per unit cell and each of these contributes to the square pyramidal sites so that the base of each square pyramid is formed on one As polyhedral unit and the apex is formed on a neighboring unit. The four octahedral sites per unit cell are formed from a square planar arrangement of As within the planes of shared prism faces, at $z=0$, $1 / 4,1 / 2$ and $3 / 4$, and from more distant As in polyhedral units immediately above and below these planes. The possible metal sites formed about the shared faces themselves are vacant. Thus, the 44 Ni atoms per unit cell are located in 44 discrete structural positions. The structure specifically accommodates the composition of the compound, $\mathrm{Ni}_{11} \mathrm{As}_{8}$, and is not a non-stoichiometric variant of an established or hypothetical $A_{3} B_{2}$ structure as suggested earlier (Peacock, 1940). The establishment of $\mathrm{Ni}_{11} \mathrm{As}_{8}$ as a stoichiometric compound largely accounts for its restricted range in composition (Yund, 1961).

Some relevant interatomic distances and bond angles are given in Table 6 and 7 respectively (the atom identification labels are consistent with the usage in Figure 3; atoms marked by an asterisk are located in adjacent unit cells). The Ni-As bond distances range from $2.28 \AA$ to $2.54 \AA$; the stretched Ni -As bond distance in the octahedral site is $2.64 \AA$. The shorter distances tend to be to the apical As in the square pyramidal coordinations. These values may be compared to a Ni-As bond distance of 2.439

Table 4. Observed and Calculated Structure Factors for Maucherite

K L	F_{0}	F_{c}					L Fo				F_{c}		L F_{0}			K L	F_{0}			$1 \mathrm{~F}_{0}$			K L Fo	$F_{0} F_{c}$		L Fo	F_{c}	
			26	155	170	14	$4 \quad 78$	81	22	61	22		766	59			155	159					147	$78 \quad 76$		$6 \quad 67$		
	$=0$		27	139	140	15	5122	117	24	71	61					13	112	115	31	144	40		1510	109111		8478	488	
				10891	1243	16	696	67	25	86	111		$\mathrm{H}=2$			14	86	85		248	22		1612	128110		0137	128	
08	549	539	2	231	234	19	- 67	48	26	66	62						107	106	18	874	98		16	$\begin{array}{r}63 \\ \hline 128\end{array}$		278	88	
12	686	685	4	82	79	20	66	33	29	74	88		2391	391		16	113	134		977	75		26	6331		480	73	
16	665	643	6	55	48	80	- 514	507	30	88	103		69161	1021		17	148	143		- 82	47					6318	299	
20	388	391	8	596	599		2256	261	32	76	94		0436	430		18	74	67		-83	59			$=4$		$6 \quad 77$	51	
24	612	651	10	234	231		356	52	30	43	59		8572	577		20	66	88	27	70	79							
14	52	33	12	331	305		489	95	4	47	45		2179	182		28	74	29	41	1109	110		073	738767		= 5		
5	85	74	14	123	116		8466	470	7	44	54		870	7		62	400	405		2167	171		413	133136	517			
6	147	135	16	537	534	10	269	273	18	96	94		0193	182			251	255		3191	188		860	606632	18	83		
7	197	181	18	86	97	14	148	144	19	75	55	30	0380	372			360	357		4172	173		127	$76 \quad 75$	19	74	45	
8	166	161	20	175	173	16	6348	338	20	72	76		1358	352			183	188		5154	153		1644	443453	66	63	59	
9	79	76	22	145	148	18	122	132	25	63	43		2335	326		10	324	339		6122	119		24308	308310		146	141	
10	63	74	24	435	455	19	59	17	26	89	85		3283	273		12	93	101		74	65		26	6563		191	185	
11	145	138	27	63	17	95	564	54	45	65	58		4183	178		14	209	204		61	63		379	$79 \quad 77$		235	233	
12	139	131	30	85	87	7	68	22	6	65	74		581	77		16	231	213		104	115		4100	100112	10	198	204	
13	98	96	52	87	90	8	68	15	7	113	130		651	27		18	251	237		90	105		5102	102100	11	146	157	
14	65	70	3	111	104	101	153	160	8	135	130		953	48		20	77	80			73		6118	18114	12	107	101	
		126	4		117	3	87	93	9	66	93	12	268	64		22	100	102		130	134		7132	32133	13	102	97	
19	131	143	5	128	125	5	240	237	10	59	61	13	375	76		24	107	116		175	179		8152	52153	16	100	93	
20	70	62	6	180	165	7	1.19	117	11	125	118		121	114		26	150	161	16	155	161		9106	0697	17	117	125	
23	58	27	7	170	172				12	110	109		7204	211		70	153	139	17	106	98		186	8686	18	66	53	
26	64	19	8	171	175		- 1		14	56	46	18	203	214			132	134	24	70	48		288	88104	714	64	18	
21	52	44	9	122	120				17	57	46	19	163	167			143	145		87	107		3108	08109	85		60	
3	147	130	11	96	110			34	18	78	103		168	173			142	141	26	140	153		4109	109112	7	84	88	
	653	686	12	113	112		42	35	19	91	108		165					117	27	155	125		588	$88 \quad 77$	8	97	96	
		145	13	141	125	6	59	55	29	71	43	22	147	159		9	72	60	50	53	40		672	7273	$\mathrm{H}=6$			
9	421	416	14	146	146	13	50	18	519	65	52		120	131		10	85	66	11	49	11		887	87110				
11.	580	565	15	111	100	17	88	95	23	69	49	24	123	142		11	64	54	19	63	59		9111	11112	62403391			
13	371	358	17	88	87	18	96	97	25	67	47		140	147		16	87	51	26	69	48		$0 \quad 85$	$85 \quad 71$			391 70	
15	251	229	18	155	139	19	86	44	26	68	78	26	84	85			126	133	27	77	63		4	$74 \quad 78$	10	83 279	70 281	
17	283	290	19	117	133	20	59	80	61	80	88	27	63	49		18	119	119	60	218	214	61	1156	56175	14	281	281	
19	303	312	20	90	70	23	64	45	2	76	86	30	58	15			76	90	1	216	223		3255	55252	17	281 57	284 39	
21	163	179	25	83	53	27	86	104	3	58	87	41	116	104		20	97	102	1	212	219		5226	26218	17	57 58	39	
23	273	292	27	67	51	32	65	19	6	56	65	4	122	121		21	83	87	3	176	183		768	68 38	719	58 96	5 96	
29	373	407	61	252	264	20	130	121	7	114	126		5289	270		22	69	80	4	109	112		174	7493	7	103	102	
31	115	116	3	139	142	1	131	130	8	187	180		110	110		81	111	95	5	76	60	13	125	25 142	2	130	102	
2	224	218	5	448	447	2	114	115	9	200	204		220	206			214	209	16	71	82			6962	3	107	121 91	
3	275	273	7	206	215	3	73	78	10	171	190	11	431	430			199	203	17	146	150		251	1247	4	107 72	91 85	
4	240	235	8	56	52	5	47	45	11	134	132		422	422			238	243	18	168	164		64	44	5	75	64	
5	207	206	11	116	111	6	89	86	12	102	105	19	142	157		13	350	345	19	114	130		281	1291	6	67	64 53	
6	157	155	13	90	58	7	168	168	16	131	114		169	174		15	114	124	20	115	111	22	58	8811	10	75	53 37	
7	62	68	15	80	77	8	267	262	17	155	143	23	196	184				114	21	121	118	71	67	777	11	70	44	
9	110	103	17	134	130	9	344	335	18	119	104	25	80	73		1	127	140	22	113	131		82	289	14	59	28	
10	149	151	19	394	373	10	307	296	23	65	37	26	64	31		2	92	110	23	102	I'1	3	101	$1{ }^{101}$	81	59 80	28 76	
11	116	105	21	328	320	11	223	214	25	76	77	27	204	182		7	65	65	24	106	101	10	69	983	3126425		250	
13	69	74 155	25	94	115	12	141	139	711	58	53	29	273	271		81		95	25	78	110	11	91	191	5	264 58 25	35	
14	160	155 231	72 3	104	112	13	88	78	19	64	44	56	79	81		91	120	112	81	79	63	14	76	675	7	90	94	
	238	231 199	4		122	14	76	67	21 816	59	26	7	1821	179	102		239	230	2	74	107	151	104	101		86		
17	132	132	9	64	64	16	164	+ 160	816	$\begin{aligned} & 67 \\ & 66 \end{aligned}$	$\begin{aligned} & 56 \\ & 45 \end{aligned}$	910	336	$\begin{aligned} & 340 \\ & 282 \end{aligned}$	$\begin{array}{ll} 4 & 181 \\ 6 & 178 \\ H=3 \end{array}$						$\begin{aligned} & 103 \\ & 108 \end{aligned}$	80325317		68	$\mathrm{H}=7$			
24	64	58	10	92	96	17	188	186	100 2									$6 \quad 178170$			$\begin{array}{rr}4117 \\ 5 & 84\end{array}$		$\begin{array}{r} 108 \\ 80 \end{array}$	$\begin{array}{ll} 2 & 124 \\ 5 & 131 \end{array}$	726422			
25	95	118	11	91	85	18	129	134	3	66	59	11	226	220					11	80	59				$\begin{aligned} & 102 \\ & 125 \end{aligned}$	7	$\begin{array}{ll} 64 & 2 \\ 65 & 1 \\ \hline \end{array}$	$\begin{aligned} & 22 \\ & 18 \end{aligned}$

A (computed from the lattice parameter data of Yund, 1961) in stoichiometric niccolite (NiAs), in which the Ni is coordinated octahedrally with As, and also to a Ni-As bond distance range of $2.359 \AA$ to $2.392 \AA$ in pararammelsbergite $\left(\mathrm{NiAs}_{2}\right.$, Fleet, 1972b), in which the Ni is again coordinated octahedrally with As. The values for the nearest As-As distances, those within the As polyhedral units, range from $3.21 \AA$ to $3.54 \AA$. The As-As distances between the As polyhedral units, forming both the edges of the pyramidal faces and the inclined edges of the octahedral site, range from $3.62 \AA$ to $3.90 \AA$. Comparative data for niccolite are $3.619 \AA$, for AsAs normal to the c-axis, and $3.272 \AA$, for As-As inclined to the c-axis; for pararammelsbergite nonbonded As-As distances range from $3.129 \AA$ to $3.575 \AA$.

The Ni atoms are in close proximity to each other in the maucherite strutcure; the nearest $\mathrm{Ni}-\mathrm{Ni}$ distances range from $2.48 \AA$ to $2.87 \AA$. There are
four neighboring Ni atoms about the $\mathrm{Ni}(1), \mathrm{Ni}(2)$, $\mathrm{Ni}(4)$ and $\mathrm{Ni}(6)$ sites and five about the $\mathrm{Ni}(3)$ and $\mathrm{Ni}(5)$ sites. The shortest $\mathrm{Ni}-\mathrm{Ni}$ distances arise through shared pyramidal faces $(2.51 \AA$ and 2.53 \AA) and through shared trigonal prisms of As atoms $(2.48 \AA$ to $2.65 \AA$). The shared pyramidal-octahedral faces give $\mathrm{Ni}-\mathrm{Ni}$ distances of $2.69 \AA$ and $2.75 \AA$, and shared pyramidal edges give Ni-Ni distances of $2.69 \AA$ to $2.87 \AA$.

The unusual five-fold, square pyramidal, coordination of Ni in maucherite is found also in the structures of millerite (NiS) and of $\alpha-\mathrm{Ni}_{7} \mathrm{~S}_{6}$ (Fleet, 1972a). In the trigonal millerite structure, the S atoms form single chains of trigonal prisms oriented parallel to the c-axis as do the As atoms in the maucherite structure; the square pyramids are formed on the prism faces with the apical S atoms slightly offset from adjacent chains. The shared trigonal prisms permit each Ni to have two Ni neighbors with interatomic distances of $2.53 \AA$. The

Table 5. Correlation Coefficients (r) for Related Superstructure Positional Parameters

	r	r	r
	$\mathrm{x}-\mathrm{Ni}$ (3)	$\mathrm{x}-\mathrm{Ni}$ (4)	$\mathrm{x}-\mathrm{Ni}$ (5)
$\mathrm{x}-\mathrm{Ni}$ (4)	0.121		
$\mathrm{x}-\mathrm{Ni}(5)$	-0.204	0.409	
$\mathrm{x}-\mathrm{Ni}(6)$	0.553	0.032	0.384
	$\mathrm{y}-\mathrm{Ni}(3)$	$\mathrm{y}-\mathrm{Ni}(4)$	$\mathrm{y}-\mathrm{Ni}(5)$
$\mathrm{y}-\mathrm{Ni}$ (4)	-0.735		
$\mathrm{y}-\mathrm{Ni}(5)$	0.661	-0.547	
$\mathrm{y}-\mathrm{Ni}$ (6)	-0.547	0.657	-0.746
	$\mathrm{z}-\mathrm{Ni}$ (3)	$z-\mathrm{Ni}$ (4)	$z-N i(5)$
z-Ni(4)	-0.511		
z-Ni(5)	-0.561	0.271	
z-Ni(6)	0.282	-0.582	-0.513
	$\mathrm{x}-\mathrm{As}$ (1)	$\mathrm{x}-\mathrm{As}$ (2)	x-As (3)
$\mathrm{x}-\mathrm{As}(2)$	-. 005		
$\mathrm{x}-\mathrm{As}$ (3)	0.444	-0.437	
$y-A s(3)$	-0.385	0.336	0.193
	$\mathrm{x}-\mathrm{As}$ (4)	y -As (4)	$\mathrm{x}-\mathrm{As}$ (5)
	0.114		
x -As (5)	-0.813	-0.047	
y -As(5)	-0.152	-0.631	0.126
	z-As (4)		
z-As(5)	0.490		

Fig. 3. Nearest-neighbor Ni environments in maucherite; $\mathrm{Ni}-\mathrm{Ni}$ bonds indicated by shared pyramidal faces: full lines; shared trigonal prisms of As atoms: long dashes; shared pyramidal-octahedral faces: short dashes; shared pyramidal edges: stipples.

Table 6. Interatomic Distances in Maucherite

orthorhombic structure of $\alpha-\mathrm{Ni}_{7} \mathrm{~S}_{6}$ is more complex. The Ni is distributed among five non-equivalent sites. These include one tetrahedral site, with a site occupancy of approximately 0.5 , and four square pyramidal sites, two with site occupancies of approximately 1.0 and two with site occupancies of approximately 0.5 (Fleet, 1972a). Twelve of the 20 S atoms per unit cell are organized into chains of trigonal prisms parallel to the a-axis at $y=1 / 4$ and $3 / 4$. The prism faces contribute to the two square pyramidal sites which have near unit occupancy. Each Ni site has several possible Ni neighbors: the Ni atoms in square pyramidal coordination are related through shared pyramidal faces, shared trigonal prisms of S , and shared pyramidal edges, so that, as in the maucherite structure, there is a range of observed Ni-Ni distances, from $2.457 \AA$ to $2.849 \AA$.

During the early stages of this investigation, a

Table 7. Bond Angles in Maucherite

Atoms*	* formi	ng angle	Angle ${ }^{\text {** }}$	Atams*	forming angle	Angle ${ }^{*-k}$
As(1' ${ }^{\prime \prime}$)	-Ni(1)	$-A s^{*}\left(2^{\prime \prime}\right)$	$161.0(3)^{\circ}$	As(1 ${ }^{\prime \prime}$)	- $\mathrm{Ni}(4)-\mathrm{As}\left(3^{1}\right)$	$86.4(5)^{\circ}$
		$-\mathrm{As}^{*}\left(3^{1}\right)$	89.9 (5)		-As(4)	152.6(7)
		-As(3'1)	86.6(5)		-As (4')	100.1 (6)
		-As(4')	99.8(4)		-As(5')	89.4(5)
$\mathrm{As}^{*}\left(2^{\prime}{ }^{\prime}\right)-\mathrm{Ni}(\mathrm{I})$		$-\mathrm{As}{ }^{*}\left(3^{\prime \prime}\right)$	85.6 (6)	As (3')	- $\mathrm{Ni}(4)-\mathrm{As}(4)$	80.8 (5)
		- $\mathrm{As}\left(3^{11}\right)$	$91.7(5)$		-As(4)	95.0 (6)
		-As(4'1)	99.1 (4)		- As (5^{+})	154.4(7)
$\mathrm{As}^{*}\left(3^{7}\right)$	-N1 (1)	-As(3'1)	161.0(3)	As (4)	- $\mathrm{Ni}(4)-\mathrm{As}\left(4^{\prime}\right)$	105.0(4)
		-As(4')	98.2(5)		-As(5')	91.9(3)
As(3'1)	-Ni(1)	-As(4')	100.8(5)	As (4')	-Ni(4)-As(5')	110.6(5)
As(1'9)	$-\mathrm{Ni}\left(2^{\prime}\right)$) $-\mathrm{As}{ }^{*}\left(2^{\prime \prime}{ }^{1}\right)$	180.0 (0)	As (2)	$-\mathrm{Ni}(5)-\mathrm{As}\left(3^{\prime \prime \prime}{ }^{\prime}\right)$	88.2(5)
		-As* (3)	91.5(4)		-As(4')	81.1(7)
		-As(5)	89,8(3)		-As (5)	152.6(6)
					-As(5)	97.3 (6)
$A 8^{*}\left(2^{\prime \prime}\right)$	$)-\mathrm{Ni}\left(2^{2}\right)$)-As* (3')	88.5 (4)			
		-As (5)	90.2(3)	As(3'1)	$-\mathrm{Ni}(5)-\mathrm{As}\left(4^{\prime}\right)$	149.0(6)
					-As(5)	84.2(7)
$A B^{*}\left(3^{1}\right)$	$-N i\left(2^{\prime}\right)$	$\begin{aligned} & -A s^{*}\left(3^{\prime \prime}\right) \\ & -A s(5) \end{aligned}$	$\begin{array}{r} 177.0(7) \\ 88.8(3) \end{array}$		-As(5')	99.2(7)
$A s^{*}\left(3^{\prime \prime}\right)$				As (4')	-Ni(5)-As(5)	92.1(4)
	- $\mathrm{Ni}\left(2^{\prime}\right)$	-As (5)	91.3(3)		$-\mathrm{AB}\left(5^{\prime}\right)$	111.0(7)
As (5)	$-\mathrm{Ni}\left(2^{\prime}\right)$)-As ($5^{\prime} \mathrm{V}$)	179.6 (5)	As (5)	-Ni(5)-As(5')	109.9(6)
As(1' ${ }^{\prime \prime}$)	-NI (3)	$-A s^{*}\left(3^{\prime}\right)$	91.9(4)	As(2)	-Ni(6)-As* (3' ${ }^{\prime \prime}$)	89.0 (4)
		$\sim \mathrm{As}^{*}(4)$	153.1 (6)		-As (4)	$100.6(7)$
		$-\mathrm{As}(5)$	99.1 (7)		-As(4')	84.8(7)
		-As(5')	82.7(7)		-As* ${ }^{*}$)	155.3 (7)
$A s^{*}\left(3^{\prime}\right)$	-Ni(3)	$-\mathrm{As}^{*}(4)$	83.7(7)	$A s^{*}\left(3^{\prime \prime}\right)$)-Ni(6)-As (4)	98.8 (6)
		$-A s(5)$	98.0 (7)		-Ass (4 ${ }^{\text {a }}$)	153.0 (6)
		-As(5')	154.6(6)		-As*(5)	83.5(8)
$\mathrm{As*}^{*}(4)$	-Ni (3)	-As (5)	107.8(7)	As (4)	- Ni (6)-As (4')	108.2(6)
		-As (5 5^{1})	90.0 (4)		-As* ${ }^{*}$)	103.8(6)
As(5)	$-\mathrm{Ni}(3)$	-As (5')	107.5(5) ${ }^{\circ}$	As (4^{1})	- Ni (6)-As* ${ }^{\text {(}}$)	$91.1(4)^{\circ}$

*Atoms marked by asterisks are located in adjacent mit cells.
**Standard deviations (in parentheses) refer to the last decimal place cited.
specimen of natural maucherite from Eisleben, Thuringia, was examined, although the examination was limited by an inability to obtain single crystal fragments. The virtual crystallographic equivalence of synthetic $\mathrm{Ni}_{11} \mathrm{As}_{8}$ and natural maucherite was confirmed. Also, in agreement with earlier workers (Peacock, 1940; Jagodzinski and Laves, 1948), 0kl superstructure reflections are smeared in the c^{*}-axis direction. However, the diffraction maxima are centered in the same relative positions and are of the same relative intensity as in the synthetic product. In addition, the $h k 0$ superstructure reflections are replaced by diffuse areas of satellite diffraction in the form of small crosses centered on the positions of the original reflections.

The diffuse satellite reflections indicate that maucherite attempts further long-range ordering processes at low temperature, the full development of which is inhibited by very slow reaction rates. The ordering may be due to a modulation of the structure. However, this modulation cannot be unidirectional in the c-axis direction, since satellite reflections are observed for $h k 0$ reflections as well as for

0 kl reflections. The diffuse nature of the satellite reflections suggests that the modulation must have a variable periodicity. It is difficult to predict the actual structural expression of the ordering, although one might expect a further rationalization of the $\mathrm{Ni}-\mathrm{Ni}$ interactions involving, in part, the development of two square pyramidal sites from the stretched octahedral site of the $\mathrm{Ni}(2)$ atoms, one site being occupied in any instance and the modulation being based on the sequence of occupancy of the two sites.

The unit cell composition of maucherite is $\mathrm{Ni}_{44} \mathrm{As}_{32}$. The structure requires 224 Ni -As σ bonds per unit cell; compared to the assumed single $\mathrm{Ni}-\mathrm{As}$ bond distances for octahedral coordination in pararammelsbergite, most of these σ bonds must have either unit or near-unit bond numbers. The outer electron configuration of Ni is $3 d^{8} 4 s^{2}$ and that of As is $4 s^{2} 4 p^{3}$. The molecular orbital bonding theory would require that the $4 s$ electrons on the Ni atoms and the $4 s$ and $4 p$ electrons on the As contribute to the Ni-As σ bonding scheme; these total 248 electrons per unit cell, far fewer than required for 224 full σ bonds. The remaining electrons must be supplied by the $3 d$ electrons on the Ni atoms. Of these, the $d_{x y}, d_{x i}$ and $d_{y z}$ orbitals are poorly disposed to contribute to the Ni -As σ bonds, and the $3 d$ electron contribution can be made only via the axially oriented $d_{x^{2}-y^{2}}$ and $d_{2}=$ orbitals. On the isolated atom these are doubly degenerate and carry one electron each. However, in maucherite the short Ni-Ni distances indicate strong positive interactions between the $d_{x y}, d_{x z}$ and $d_{y z}$ orbitals which project through the pyramidal and octahedral edges. The interaction of the orbitals projected between the Ni atoms related through shared pyramidal edges will be σ bonding in character since the orbitals overlap end-on. However, orbitals between the Ni atoms related through shared pyramidal faces, shared trigonal prisms of As atoms, and shared pyramidal-octahedral faces will interact obliquely. Although the site symmetries of the Ni atoms related by shared trigonal prisms of As atoms would permit π bonding between those orbitals normal to the bonding plane, π bonding possibilities for the other $\mathrm{Ni}-\mathrm{Ni}$ bonds are limited. It seems logical, then, to argue that, as in parkerite $\left(\mathrm{Ni}_{3} \mathrm{Bi}_{2} \mathrm{~S}_{2}\right)$ where the Ni atoms are related at moderately short distances through shared octahedral faces (Fleet, unpublished data), all of the $d_{x y}, d_{x z}$ and $d_{y z}$ orbital interactions are σ bonding in character, the oblique orbital interactions giving rise to fractional bent σ bonds. Alternatively, one might invoke a hybridization of
these orbitals on each Ni to allow direct bonding orbitals between the related Ni atoms. The $d_{x y}, d_{y z}$ and $d_{x z}$ orbitals are triply degenerate on the isolated atom and carry two electrons each, but a σ bonding role must require fewer electrons. If, say, two of these are added to the $d_{x^{2}-y^{2}}$ and $d_{z^{2}}$ orbitals, allowing a maximum contribution of four $3 d$ electrons per Ni atom to the Ni-As σ bonds, the remaining four $3 d$ electrons may be distributed among the bonding and antibonding $\mathrm{Ni}-\mathrm{Ni} \sigma$ orbitals such that for the shorter $\mathrm{Ni}-\mathrm{Ni}$ bonds, which are similar to the bond distance in metallic $\mathrm{Ni}(2.492 \AA)$, a greater proportion would be bonding and for the longer distances relatively more would be antibonding. There are now 424 electrons for the Ni-As σ bonds; the discrepancy of 24 electrons per unit cell must reflect some degree of partial bond formation; for example, the stretched $\mathrm{Ni}(2)-\mathrm{As}(5)$ bonds would represent bond numbers of about 0.5.

Acknowledgments

This work was supported by a National Research Council of Canada operating grant.

References

Cromer, D. T. (1965) Anomalous dispersion corrections computed from self-consistent field relativistic DiracSlater wave functions. Acta Crystallogr. 18, 17-23.
———, and J. B. Mann (1968) X-ray scattering factors computed from numerical Hartree-Fock wave functions. Acta Crystallogr. A24, 321-323.
de Meulenaer, J., and H. Tompa (1965) The absorption correction in crystal structure analysis. Acta Crystallogr. 19, 1014-1018.
Fleet, M. E. (1972a) The crystal structure of $\alpha-\mathrm{Ni}_{\mathrm{i}} \mathrm{S}_{\mathrm{e}}$. Acta Crystallogr. B28, 1237-1241.
__ (1972b) The crystal structure of pararammelsbergite (NiAs_{z}). Amer. Mineral. 57, 1-9.
Heyding, R. D., and L. D. Calvert (1957) Arsenides of the transition metals. II. The nickel arsenides. Can. J. Chem. 35, 1202-1215.
Jagodzinski, H., and F. Laves (1948) Eindimensional fehlgeordnete Kristallgitter. Schweitz. Mineral. Petrogr. Mitt. 28, 456-467.
Laves, F. (1935) Zweidimensionale Überstruckturen. Z. Kristallogr. 90, 279-282.
Long, R. E. (1965) The crystal and molecular structures of $7,7,8,8$ - tetracyanoguinodimethane and cyclopropanecarboxamide and a program for phase determination. Ph.D. Thesis, University of California, Los Angeles.
Peacock, M. A. (1940) On maucherite (nickel-speiss, placodine, temiskamite). Mineral. Mag. 25, 557-572.

- (1942) Diffuse diffraction and disorder in maucherite. Amer. Mineral. 27, 229.
Yund, R. A. (1961) Phase relations in the system Ni-As. Econ. Geol. 56, 1273-1296.

Manuscript received, October 2, 1972; accepted for publication, November 21, 1972.

