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INTRODUCTION

Crystal structure refinement is used to obtain accurate and
precise values of atom coordinates, atom displacement param-
eters, and scattering powers at the structural sites (hereafter
abbreviated as site scattering). The last item is particularly
important when dealing with minerals, owing to the widespread
occurrence of isomorphous substitution at several structural
sites. Refined site-scattering values depend on the model used
(e.g., use of the scattering factors of the correct atom species
and appropriate ionization state) and on the refinement proce-
dure (e.g., the weighting scheme, selection of the “observed”
reflections, adequate corrections for absorption and secondary
extinction, use of constraints, and/or restraints, control of cor-
relations between atomic-displacement parameters and site scat-
tering, etc.). Additionally, correct determination of site
scattering is necessary to obtain reliable site populations.

Studies of cation ordering in rock-forming minerals com-
bine chemical analysis with structure refinement and/or spec-
troscopic characterization of cation ordering at the short- and
long-range level as a function of bulk composition and inten-
sive parameters of crystallization. In particular, variations in
the site populations as a function of temperature (T) are cur-
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Leverage analysis allows detection of the reflections that have the greatest influence on the esti-
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the basis of (low or high) sin θ/λ, high ΔF/σFo or of low I/σI] are potentially dangerous.

The choice of a correctly ionized model is shown to be critical to obtain accurate estimates of the
refined site-scatterings. The set of reflections with the highest leverage value with respect to a pecu-
liar group of variables was found to be nearly invariant within isomorphous solid-solutions; this
implies that the results of this work are valid throughout the amphibole and garnet compositional
spaces. The warnings proposed to the treatment and refinement of X-ray diffracted data may be of
general utility in the structure refinement of minerals.

rently used as input for thermodynamic and kinetic modeling
of ordering processes in minerals.

Convergence in the modeling procedure is particularly sen-
sitive to the starting point, (i.e., to the estimate of the site popu-
lations). To give an idea of this dependence, a precision of
±0.0007 (which is the highest precision claimed so far) in the
(Mg vs. Fe2+) occupancy of an octahedral site of an orthopyroxene
may give calculated cooling rates ranging from 0.06 to 0.6 °C/y
(Kroll et al. 1997). Different precisions and systematic errors
are inherent in the experimental procedures used. As a conse-
quence, different (but highly precise) strategies used in two labo-
ratories on two orthopyroxene crystals separated from the same
portion of a meteorite may result in equilibration temperatures
of 388 and 467 °C, respectively, corresponding to cooling rates
of 0.2 °C/y and 18 °C/y (Zema et al. 1996; Kroll et al. 1997
respectively). Taking into account all the sources of random and
systematic error, Kroll et al. (1997) concluded that these values
are to be considered in satisfactory agreement.

Precision and accuracy of estimated site populations are
strongly dependent on: (1) the ability to apply the best experi-
mental conditions and procedures for each analytical technique,
and (2) systematic biases between the different techniques
which have been used for characterization of the crystal com-
position (most often single-crystal structure-refinement, elec-
tron-microprobe analysis, and Mössbauer spectroscopy). In this
paper, we focus only on the optimization of the procedures for
single-crystal structure-refinement.*E-mail: merli@crystal.unipv.it
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THE STATE OF THE ART

Kirfel (1996) reported the results of a Round-Robin on least-
squares structure refinement of the same sets of diffracted in-
tensities obtained from an olivine crystal and an orthopyroxene
crystal. He concluded that (1) different models and strategies
used for the refinement of poor-to-moderate quality data (as
those obtained by sealed X-ray tube) give occupancy values
accurate within the calculated standard deviation, the latter
being too high to allow further thermodynamic calculations;
(2) high quality data (in terms of internal consistency and dis-
tribution of σF2/ F2 vs. F2) are more sensitive to refinement
strategy, and may give highly precise results which are actu-
ally significantly biased; (3) as a consequence, several refine-
ments have to be done and compared to obtain results
sufficiently accurate to be used to model cation-ordering pro-
cesses. Recently, Stimpfl et al. (1999) gave a more optimistic
diagnosis, showing that the same set of data collected on an
orthopyroxene gives site populations in agreement within the
estimated standard deviation (esd) when refined with the pro-
grams STRUCSY, SHELXL-93, and RFINE90 (STOE-AEDII
diffractometer software; Sheldrick 1993; Finger and Prince
1975) according to different procedures. However, they found
that the choice of the model and of the refinement strategies is
crucial for lowering the esd, and, in particular, they suggested
adoption of ionized scattering-factors and of adjustable weight-
ing schemes. These conclusions are in agreement with our ex-
perience at CSCC on systematic structure refinement of
rock-forming minerals (e.g., Ungaretti 1980; Hawthorne et al.
1995, and references therein).

Kroll et al. (1997) examined the effects of choosing differ-
ent refinement strategies (weighting schemes, bonding mod-
els, selection of “observed” reflections) on the estimate of site
occupancies in orthopyroxene. They proposed a novel bivari-
ate analysis of the set of collected intensities; it consists of
stepwise truncation of low-order (LOT) or high-order data
(HOT) and rejection of the outliers under different ΔF/σ cut-
off thresholds. In particular, they suggested that the LOT pro-
cedure reduces effects due to chemical bonding and poor
extinction correction. The proposed strategy also eliminates
correlation between site occupancies and atom-displacement
parameters by fixing the B(M2)/B(M1) ratio to a value that
provides invariance of the occupancies with respect to the
choice of the data subset.

The empirical procedure proposed by Kroll et al. (1997)
may yield highly precise results. However, systematic cut-off
of categories of reflections (low- or high-order, high ΔF/σ) may
be in conflict with basic statistical axioms of the least-squares
method. Statistical sciences have provided various techniques
which can lower the negative influence of outliers, which may
result from the non-correctness of the model or from the non-
normality of the errors associated to each observation [cf. Prince
and Collins (1991) for an exhaustive review].

Maximum-likelihood methods tend to maximize the likeli-
hood function where Φ(x) is the

S xi
i

= ( )[ ]∑ ln Φ

probability density function (pdf) of the error distribution as-

sociated with the observations, and x is the set of the “true”
values of the parameters. Maximization of S is a more power-
ful alternative to the least-squares method.

Robust-resistant methods are most useful when the error
distribution is not well known. They are called “robust” if they
work well for a great number of error distributions, and “resis-
tant” if the results are not affected by significant fluctuation in
the estimation of the parameters. Therefore, least-squares re-
finement based on a weighting scheme that takes into account
the agreement between observed and calculated data [e.g., that
proposed by Prince (1982), which is available in the least-
squares structure refinement program CRYSTALS (Watkin et
al.1996)] can be considered as a robust-resistant method of re-
finement.

When the correctness of the model is doubtful, any preju-
dice that can potentially generate outliers can be avoided by
means of Maximum-Entropy Methods [MEM; cf. Shannon
(1948) and Jaynes (1968) for the theory, and Collins (1982)
and Bricogne (1984) for important application in crystallogra-
phy]. When dealing with the estimation of structural param-
eters, the MEM approach involves maximization of the function
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in which a set of experimental observations is given as (nor-
malized) prior proportions m and the calculated values are given
as (normalized) p. An advantage of this method with respect to
standard least-squares structure refinement is that there is no
need of overall scale determination; this is particularly impor-
tant when the overall scale-factor and the atomic- displacement
parameters are strongly correlated.

To sum up, there are several statistical approaches that can
be chosen according to the peculiarities of the data set. There-
fore, to solve the general problem of detection and correction
of outliers, there is no need to apply any empirical strategy to a
method that may result in an inadequate answer.

We assume that errors associated with the observations (i.e.,
the diffracted intensities) are normally distributed in a data set
collected from a single-crystal, and that the model of the struc-
ture is substantially correct; therefore, there is no need to use a
method alternative to least-squares refinement. Nevertheless,
some improvements to the strategies in treating and refining
diffracted intensities can be obtained by use of leverage analy-
sis (Prince and Nicholson 1985). This procedure should allow
us to monitor the influence of each data point (i.e., single re-
flection) on the results of the structure refinement. In our opin-
ion, this is the correct way to identify potential outliers and to
assess the reliability of refinement results.

THE THEORY OF LEVERAGE ANALYSIS AND
ITS APPLICATION TO CRYSTAL-STRUCTURE

REFINEMENT OF MINERALS

We summarize here the most important features of leverage
analysis (Prince and Nicholson 1985). If y is the experimental-
observation vector and M(x) is the set of equations which rep-
resent the model (i.e., yi = Mi(x) + ei, where ei is the experimental
error), a matrix A can be defined such that Aij = ∂Mi/∂xj. If W is
the positive-definite matrix of the weight, a triangular matrix
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U can also be defined such that W = UTU. Under the condition
that the errors are not correlated, U is a diagonal matrix and Uii

= 1/σi. If we consider a linear model M(x) = A(x), which has a
minimum at xM = (ATWA)–1ATWy, and let Z be the matrix UA,
which has dimensions n × p (n being the number of observa-
tions and p the number of parameters in the model), the rela-
tion between the estimate xM and the matrix Z is xM =
(ZTZ)–1ZTy. The n × n matrix P = Z(ZTZ)–1ZT is called the pro-
jection matrix or the hat matrix. It is symmetric, and it is pos-
sible to show that are trace (P) = p and 0 ≤ Pii ≤ 1; obviously,
the average value of Pii is p/n.

Each diagonal element Pii of the matrix P is the leverage of
the ith observation, and represents the rate of variation of the
calculated value of a data point as a function of a change in the
observed value. If xj is the refined variable, the ith reflection
introduced in the refinement does not strongly affect the esti-
mate of xj when Pii is close to zero (or is significantly lower
than the average Pii value). Vice versa, when Pii is close to 1,
the ith reflection strongly affects the least-squares process.

We can now apply this approach to situations that may be
encountered during structure refinement of minerals. (1) The
ith reflection has a high leverage with respect to variation of a
structural parameter (e.g., an atomic coordinate or a site-scat-
tering value), and the refined model is not able to reproduce
this reflection satisfactorily (high ΔF). In this case it is likely
that the parameter under consideration has not been correctly
estimated. (2) The ith reflection cannot be properly reproduced
but has a low leverage with respect to the refined structural
parameter. In this case, its presence can be tolerated, as it can-
not strongly affect the estimate of the variable. (3) Most of the
high-leverage reflections can be satisfactory reproduced; the
estimate of the variable of interest is highly reliable.

When the outliers in the refinement have high leverage val-
ues, two hypotheses must be investigated: (1) the model has
not been correctly defined; (2) there are significant experimental
errors which could derive from the Renninger effect, thermal
diffuse scattering, low quality of the crystal, etc. [cf. Abrahams
(1969) for an extensive review of experimental errors which
may occur during X-ray data-collection]. In the second case,
the outlier reflections should be re-measured, although they
will not improve the agreement if the aberrant Fo values were
due to non-transient reasons (e.g., inhomogeneity of the crys-
tal, poor absorption correction). In any case, the reason for the
bad agreement should be found by careful consideration of both
the data and the model (Prince and Nicholson 1985), and its
effect on the model should be evaluated.

Leverage analysis also allows evaluation of the decrease of
the variance of the estimate of a given parameter any time a
data point (a reflection) is repeated. For the ith data point, if z is
the ith row of the matrix Z defined above, zVnzT = Pii (where Vn

is the variance-covariance matrix for an n-reflection model),
the updated variance-covariance matrix is Vn+1 = Vn –VnzTzVn/
(1+Pii), and t = zVn, tj

2/(1+Pii) is the amount by which the vari-
ance of the estimate of a parameter would be reduced by rep-
etition of the ith data point. If we apply this reasoning to the
collection of X-ray diffracted intensities, it is evident that we
can avoid repeated measurement of reflections with low lever-
age values; conversely, it is wise to find the reason(s) for high

Fo– Fc values for reflections with high leverage values.
To our knowledge, only Hazen and Finger (1989) have used

leverage analysis in the structural study of minerals. They made
a leverage analysis of the intensities collected for garnets to
optimize the data collection by checking that the high-lever-
age reflections were present in the reduced data sets.

EXPERIMENTAL PROCEDURES AND RESULTS

We applied a leverage analysis to the reflections of high-
resolution intensity-data sets collected from two crystals with
rather simple compositions: garnet (space group Ia3

–
d), and

amphibole (space group C2/m). The crystals were nearly sto-
ichiometric pyrope (Mg3Al2Si3O12, a = 11.4573 (9) Å, V =
1504.00 Å3) and tremolite [■■Ca2Mg5Si8O22(OH)2, a = 9.8359
(3) Å, b = 18.0450 (6) Å, c = 5.2752 (2) Å, β = 104.750 (3)°,
V = 905.43 Å3]. These minerals were used because (1) they are
widespread rock-forming minerals that record changes in petro-
genetic conditions; (2) they have significantly different sym-
metry and structural complexity; (3) the expertise on garnet
and amphibole crystal-chemistry developed in the last twenty
years at CSCC during the refinement of approximately 500
garnet and 1000 amphibole crystals allows straightforward and
reliable interpretation of the results. Both the selected crystals
were gem-quality, and were ground to spheres of ≈0.4 mm di-
ameter to reduce errors due to inaccurate absorption correc-
tion. They were mounted on a Philips PW-1100 four-circle
diffractometer and analyzed with graphite-monochromatized
MoKα X-radiation up to θ = 67° (six equivalent reflections)
for pyrope and to θ = 62° (two equivalent reflections) for tremo-
lite. Intensities were corrected for Lorentz-polarization and for
spherical absorption, and then merged by applying a weight
equal to 1/σ to each equivalent reflection. Rsym values were 2.0%
for pyrope (1052 unique reflections) and 1.5% for tremolite
(6942 unique reflections), respectively. The structure refine-
ments were done with the program CRYSTALS (Watkin et al.
1996), by using the robust-resistant weighting scheme provided
by the program. The results are reported in Table 1. After conver-
gence, the refined models were used as input for a locally writ-
ten full-matrix least-squares program which allows us to store
the W and A matrices defined above and to apply leverage analy-
sis to the results.

Strictly speaking, leverage analysis should be done with re-
spect to changes of a single variable; when a group of variables
is allowed to vary, the true effect of each reflection on the esti-
mate of each variable is partly obscured. In fact, the total lever-
age of the data points (reflections) in each analysis is normalized
to one, and a single data point can have a leverage near to 1 for a
single variable in the group, and near to 0 for all the other vari-
ables, giving an average leverage for the group of variables still
higher than the mean value <L> but far lower than if only the
first variable were taken into account. Therefore, a correct test
should have been done by doing separate leverage analysis for
all the reflections (1052 and 6852, respectively) with respect to
each of the 22 variables in pyrope and the 120 variables in tremo-
lite. These laborious calculations would probably be also incom-
patible with a concise and effective discussion of the results.
Therefore, we decided to group analogous variables and to do
leverage analysis with respect to variation of (1) the overall scale-
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factor; (2) the secondary extinction parameter; (3) the atom co-
ordinates which are not fixed by symmetry (3 for pyrope, 31 for
tremolite); (4) the anisotropic components of the atom-displace-
ments parameters (13 for pyrope, 74 for tremolite); (5) the re-
fined site-scattering values (4 cation and anion sites in pyrope,
13 in tremolite). This choice allowed us to monitor the effects of
the reflections on each type of variable during least-squares re-
finement and to draw some general conclusions. Separate runs
were also done for the refined scattering values at the cation site
in pyrope and are discussed below.

RESULTS

For each group of variables, the calculated leverage values
have been plotted as a function of the amplitude of the ob-
served structure factor (|Fo|) and the resolution (sin θ/λ) of the
single reflections (i.e., of the parameters often used for cutting
the data off). For clarity, the behavior of the same group of
variables against the same parameter in the two minerals (a:
pyrope; b: tremolite) are compared in each figure. It must be
stressed that the absolute values of the leverage depend both
on the structure and on the types and number of variables that
have been simultaneously allowed to vary in each calculation.
The influence of each reflection on the refinement results can
be evaluated only with respect to the average value of the le-
verage (<L> = p/n) (which is reported in the captions).

Scale factor and extinction coefficient

In both minerals, the leverage on the scale factor increases
parabolically as a function of |Fo| (Figs. 1a and 1b). Conversely,
no systematic trend is observed as a function of sin θ/λ, the
leverage being high (i.e., far higher than <L>) for only a frac-
tion of (intense) reflections in the sin θ/λ ranges 0.2–0.8 in
pyrope (Fig. 2a) and 0.05–0.4 in tremolite (Fig. 2b). Similar,

although less regular, trends are observed for the extinction
coefficient; in this case, a dozen reflections with high |Fo| val-
ues and low sin θ/λ are dominant (Figs. 3a, 3b, 4a, and 4b).
This evidence explains why truncation of low-order reflections
gives results less sensitive to incomplete correction for extinc-
tion (Kroll et al. 1997); however, it also indicates that such
truncation may prevent a correct estimate of that variable.

Atom coordinates

Only the oxygen atom occupies a general position in the
garnet structure, and thus its three coordinates are the only po-
sitional parameter free to vary during structure refinement.
There are fewer symmetry constraints present in the amphib-
ole structure, in which 30 to 34 atom coordinates are free to
vary, depending on the presence or absence of A-site cations
and of splitting at the A and M4 sites.

For pyrope, reflections with the highest leverage on the de-
termination of the oxygen-atom coordinates are irregularly dis-
tributed over the whole range of both |Fo| (Fig. 5a) and sin θ/λ
(Fig. 6a). Conversely, for tremolite, the leverage decreases regu-
larly as a function of sin θ/λ (Fig. 6b), and no interpretable
trend is observed as a function of |Fo| (Fig. 5b). The trend in
Figure 6a suggests the importance of high-resolution data (sin
θ/λmax ≥ 1.2 Å–1) when refining the geometrical features of the
garnet structure, a peculiarity that had been already observed
in a systematic work on garnet crystal-chemistry (Merli et al.
1995). Conversely, a data set of medium resolution (0.70 < sin
θ/λmax < 0.80 Å–1) includes all the high-leverage reflections in
the case of amphibole (Fig. 6b). Again, this is in agreement
with the results obtained during systematic work on amphib-
ole crystal-chemistry at the CSCC: the geometrical model is
not significantly modified by introduction of reflections with
sin θ/λ > 0.7–0.8 Å–1.

TABLE 1. Selected refinement parameters of pyrope* and tremolite†

Site x/a y/b z/c ion/ss‡ Ueq U11 U22 U33 U23 U13 U12

pyrope*§
O 0.0330(1) 0.0503(1) 0.6533(1) 0.72(1) 0.0053 551(4) 674(5) 443(4) –17(3) –118(3) 78(3)
X 1/8 0 1/4 12.26(2) 0.0080 490(8) 1063(7) 1063(7) 281(6) 0 0
Y 0 0 0 0.57(1) 0.0038 377(3) 377(3) 377(3) 1(2) 1(2) 1(2)
Z 3/8 0 1/4 0.40(1) 0.0034 304(4) 354(3) 354(3) 0 0 0

tremolite †||
O1 0.1119(1) 0.0857(1) 0.2180(1) 0.83(1) 0.0056 447(4) 607(4) 649(4) –19(3) 117(3) –30(3)
O2 0.1187(1) 0.1709(1) 0.7244(1) 0.92(1) 0.0060 459(4) 722(4) 646(4) –45(3) 140(3) –37(3)
O3 0.1085(1) 0 0.7155(1) 0.69(1) 0.0073 834(7) 656(6) 733(7) 0 218(5) 0
O4 0.1351(1) 0.2519(1) 0.2069(1) 0.87(1) 0.0070 872(5) 579(4) 860(5) –83(4) 313(4) –276(4)
O5 0.3466(1) 0.1344(1) 0.1005(1) 0.79(1) 0.0069 664(5) 921(5) 646(5) 271(4) 165(4) –65(4)
O6 0.3440(1) 0.1188(1) 0.5891(1) 0.82(1) 0.0068 680(4) 878(5) 592(5) –256(4) 139(4) 16(4)
O7 0.3377(1) 0 0.2928(1) 0.75(1) 0.0075 787(7) 407(6) 1318(9) 0 294(6) 0
T1 0.2806(1) 0.0839(1) 0.2972(1) 0.30(1) 0.0043 421(2) 403(2) 460(2) –17(1) 105(1) –37(1)
T2 0.2884(1) 0.1711(1) –0.1953(1) 0.35(1) 0.0044 423(2) 464(2) 443(2) –18(1) 124(1) –78(1)
M1 0 0.0878(1) 1/2 12.12(6) 0.0058 656(3) 535(3) 577(3) 0 191(3) 0
M2 0 0.1765(1) 0 12.17(6) 0.0059 608(3) 557(3) 628(3) 0 190(3)  0
M3 0 0 0 12.17(7) 0.0058 656(3) 491(3) 576(3) 0 125(3) 0
M4 0 0.2780(1) 1/2 20.10(2) 0.0073 970(2) 605(2) 1011(3) 0 610(2) 0
H 0.196(3) 0 0.764(7) 1.00 0.15(2)
Note: The anisotropic-displacement parameter is of the form exp (–2π2*(h·h·a*·a*·U11+ k·k·b*·b*·U22 + l·l·c*·c*·U33 + 2 k·l·b*·c*·U23 +2 h·l·a*·c*·U13 + 2
h·k·a*·b*·U12); Uij are multiplied by 105.
* DM 3 from Dora Maira (Italy)(no. 44 in the CSCC garnet database).
† 9527 from Val Tremola (Italy) (no. 850 in the CSCC amphibole database).
‡ Refined occupancies of the neutral vs. fully ionized scattering-curve or refined site-scatterings.
§ R = 2.75%; Rw = 1.66%; GoF = 0 .98; overall scale factor = 0.34(1); secondary extinction (Larson 1969) = 52.9(34).
|| R = 3.16%; Rw  = 1.86%; GoF = 1.15; overall scale factor = 1.12(6); secondary extinction = 164.0(40).



MERLI ET AL.: LEVERAGE ANALYSIS AND STRUCTURE REFINEMENT536

FIGURE 1. The patterns of the leverage values obtained during the refinement of the scale factor plotted as a function of Fo. <L> values are
0.001 and 0.0001, respectively.

FIGURE 2. The patterns of the leverage values obtained during the refinement of the scale factor plotted as a function of sin θ/λ. <L> values
as in Figure 1.

FIGURE 3. The patterns of the leverage values obtained during the refinement of the extinction coefficient plotted as a function of Fo. <L>
values are 0.001 and 0.0001, respectively.
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FIGURE 4. The patterns of the leverage values obtained during the refinement of the extinction coefficient plotted as a function of sin θ/λ.

FIGURE 5. The patterns of the leverage values obtained during the refinement of the atomic coordinates plotted as a function of Fo. <L>
values are 0.003 and 0.004, respectively.

FIGURE 6. The patterns of the leverage values obtained during the refinement of the atomic coordinates plotted as a function of sin θ/λ.
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Atom displacement parameters

No clear indication for refinement strategies can be obtained
by plotting the leverage as a function of |Fo| (Figs. 7a and 7b);
however, it is evident that high-resolution data are critical for
accurate refinement of the garnet structure (Fig. 8a) and are
less critical for the amphibole structure (Fig. 8b).

Site scattering and site occupancies

The x and y occupancies of two atom species, represented
by the appropriate scattering curves, are usually refined under
the constraint x + y = 1 at each structural site. Sometimes, least-
squares programs allow variation of the occupancies of a larger
number of scattering curves (or combinations of two scatter-
ing curves) during the structure refinement. The selected com-
bination of scattering curves cannot often represent the very

FIGURE 7. The patterns of the leverage values obtained during the refinement of the atom displacement parameters plotted as a function of
Fo. <L> values are 0.012 and 0.011, respectively.

complex site populations of minerals; therefore, it is wiser to
refer to the physically meaningful quantity which is actually
refined, i.e. the scattering power at the structural site (abbrevi-
ated as site scattering; Hawthorne et al. 1995). This is actually
the quantity that is converted into site populations in the final
crystal-chemical formulae, and which must be determined with
high precision and accuracy, especially when small variations
in cation ordering need to be detected.

In minerals, most of the sites occupied by O and several of
those occupied by Si do not show mixed occupancy. For such
cases, the occupancies of pairs of scattering curves correspond-
ing to the extreme ionization states (O vs. O2–, Si vs. Si4+) can
be refined with the aim of an approximate estimate of the ion-
ization state. This procedure is particularly fruitful with very
accurate data, and provides lower disagreement indices and

FIGURE 8. The patterns of the leverage values obtained during the refinement of the atom displacement parameters plotted as a function of
sin θ/λ.



MERLI ET AL.: LEVERAGE ANALYSIS AND STRUCTURE REFINEMENT 539

physically satisfactory models; however, it also increases the
degrees of freedom of the least-squares system and, conse-
quently, lowers the standard deviations of other variables
(Ungaretti et al. 1983; Hawthorne et al. 1995 and references
therein).

The scattering curves for neutral and fully ionized states
differ significantly only at very low sin θ/λ values (<0.3 Å–1),
and the effects of ionization state are detectable only in that
region. Low-θ reflections (several of which are also weak re-
flections) have the highest leverage in the estimate of site scat-
tering and ionization state (Figs. 9 and 10). The leverage values
obtained in this calculation are by far the highest reported in
this work, which implies that the estimate of the site scattering
may be significantly biased if an incorrect model for ioniza-
tion is adopted at the O and Si sites. This further confirms that
neutral scattering curves must not be used for the assessment
of accurate site populations.

Trends in leverage values as a function of changes in a single
variable (ionization state of species at the O and Z sites, site
scattering at the X and Y sites) were monitored for the pyrope
structure (Fig. 11). Distinct sets of reflections at distinct inter-
vals of (low) sin θ/λ contribute to the estimate of ionization
state at the O and Z sites. However, the same low (weak-to-
medium) reflections contribute to the estimate of site scatter-
ing at the X and (especially) the Y sites. The distinct populations
in Figures 11c and 11d can by explained by noting that distinct
categories of reflections contribute in different ways to the es-
timate of site scattering, some of them being totally insensitive
in this regard.

DISCUSSION

The results of the present work show that the highest lever-
age values (those with L > 100 <L>) are obtained when the
extinction coefficient (Figs. 3 and 4) and the ionization state

FIGURE 10. The patterns of the leverage values obtained during the refinement of the site scattering plotted as a function of sin θ/λ.

FIGURE 9. The patterns of the leverage values obtained during the refinement of the site scattering plotted as a function of Fo. <L> values are
0.004 and 0.0019, respectively.
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(Figs. 9, 10, and 11) are allowed to vary, and that low sin θ/λ
reflections are particularly critical in this regard. Some reflec-
tions have high leverage values with regard to the estimation
of more than one variable (e.g., extinction coefficient and ion-
ization state at O and Z, ionization state at Z and site scattering
at Y in pyrope); an incorrect value for one of the two variables
could significantly affect the estimation of the other.

We observed a remarkable difference in the trends of the
calculated leverage of reflections in pyrope and tremolite, sug-
gesting that different crystal structures are most likely charac-
terized by different leverage patterns. Table 2 provides lists
(derived for the pyrope) of the ten reflections with the highest
leverage values with respect to the derivation of the scale fac-
tor, the extinction coefficient, the oxygen-atom coordinates,
the anisotropic-displacement parameters, and the ionization
state and site-scattering value in the garnet structure.

To check whether the results obtained with pyrope and
tremolite could be of more general use, the leverage analysis
was done for garnet crystals within the pyralspite, ugrandite,
and schörlomite compositional ranges, obtaining remarkable

invariance; only the relative order of importance changes. The
same behavior has been noticed for two other amphibole com-
positions (taramite and richterite). When working on a given
mineral, a preliminary mapping of the leverage of the reflec-
tions allows us to know a priori whether possible outliers in
the structure refinement are likely to affect the estimate of a
variable, and thus cannot be discarded but need further and
more accurate measurement or correction of the diffracted in-
tensity. It is evident from the above discussion that leverage
analysis should be done before planning any refinement strat-
egy which involves truncation of the data, either as a function
of |Fo| or/and of sin θ/λ. <L> being defined as p/n, at constant
number of parameters (p) a decrease in n (the number of re-
flections used in the refinement) increases <L> and thus the
leverage of each observed reflection. Leverage analysis is thus
even more important when dealing with low-resolution data.

Systematic truncation of the data can eliminate irreplace-
able information and artificially enhance the importance of
some reflections. If reflections at low sin θ/λ have the highest
leverage values (as it is the case for most of the variables ex-

FIGURE 11. The patterns of the leverage values obtained during the refinement of the site scattering in pyrope, plotted as a function of sin
θ/λ; (a) O site; (b) Z site; (c) Y site; (d) X site. <L> value is 0.001.
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amined), their truncation would make the remaining reflections
less sensitive to variation in the model; this would imply that
the consequent small variations in the Fc would not provide
clear indication of the best solution.

Truncation of high-order reflections seems to be less criti-
cal, especially in complex structures with a large number of
variables, such as the amphiboles. Conversely, highly symmet-
ric structures (e.g., garnet) and less complex structures (e.g.,
olivine, orthopyroxene, as we are presently verifying) do need
high-resolution data.

TABLE 2. The reflections which have the highest leverage values with respect to the refinement of the most important parameters in the
garnet structure

h k l Fo σ Fo Fc R I/σI sinθ/λ Leverage
scale factor (<L> = 1/1052 = 0.00095)

0 8 0 279.83 2.74 277.59 0.01 51 0.35 0.0423
8 0 8 266.92 5.07 271.54 0.02 26 0.49 0.0404
4 6 0 236.55 5.18 238.68 0.01 22 0.31 0.0312
4 4 4 232.07 0.91 234.50 0.01 127 0.30 0.0302
8 8 8 228.10 1.42 234.06 0.03 80 0.60 0.0300
0 4 0 240.77 2.73 228.89 0.05 44 0.17 0.0287
4 6 2 222.05 4.94 227.34 0.02 22 0.33 0.0283
2 4 0 201.22 3.77 197.41 0.02 26 0.20 0.0214
2 12 2 194.16 1.43 191.30 0.01 67 0.54 0.0201
4 8 0 189.92 2.95 195.31 0.03 32 0.39 0.0209

secondary extinction coefficient (<L> = 1/1052 = 0.00095)
0 8 0 279.83 2.74 277.59 0.01 51 0.35 0.1654
0 4 0 240.77 2.73 228.89 0.05 44 0.17 0.1508
4 6 0 236.55 5.18 238.68 0.01 22 0.31 0.1014
4 4 4 232.07 0.91 234.50 0.01 127 0.30 0.0989
8 0 8 266.92 5.07 271.54 0.02 26 0.49 0.0984
2 4 0 201.22 3.77 197.41 0.02 26 0.20 0.0800
4 6 2 222.05 4.94 227.34 0.02 22 0.33 0.0787
8 8 8 228.10 1.42 234.06 0.03 80 0.60 0.0370
4 8 0 189.92 2.95 195.31 0.03 32 0.39 0.0296
2 3 3 143.21 1.79 147.25 0.03 40 0.20 0.0208

oxygen coordinates (<L> = 3/1052 = 0.00285)
0 24 0 94.94 1.77 94.47 0.00 26 1.05 0.0268
16 16 16 87.52 0.44 85.82 0.02 98 1.21 0.0228
0 12 0 86.13 0.52 87.24 0.01 82 0.52 0.0215
10 0 10 102.82 1.79 101.28 0.01 28 0.62 0.0212
10 20 10 58.87 0.56 58.40 0.01 52 1.07 0.0204
16 0 16 117.25 0.34 115.09 0.02 171 0.99 0.0188
6 0 6 7.94 1.55 3.57 0.55 2 0.37 0.0180
2 0 2 29.46 0.29 25.87 0.12 51 0.12 0.0175
12 12 12 28.41 0.53 28.60 0.01 26 0.91 0.0160
10 22 0 7.89 0.99 7.89 0.00 3 1.05 0.0147

thermal parameters (<L> = 13/1052 = 0.0124)
0 28 0 26.38 0.68 27.10 0.03 19 1.22 0.0984
0 20 0 110.02 1.05 108.31 0.02 52 0.87 0.0863
12 12 12 28.41 0.53 28.60 0.01 26 0.91 0.0538
0 12 0 86.13 0.52 87.24 0.01 82 0.52 0.0469
0 16 0 129.87 0.96 129.75 0.00 67 0.70 0.0453
4 24 4 3.65 1.24 0.98 0.73 1 1.08 0.0418
4 16 4 4.59 1.04 2.22 0.52 2 0.74 0.0383
8 24 8 72.04 0.63 71.51 0.01 57 1.16 0.0375
12 20 12 23.13 1.15 23.13 0.00 10 1.14 0.0373
8 20 0 48.24 1.28 48.84 0.01 18 0.94 0.0367

occupancies (<L> = 4/1052 = 0.00380)
2 1 1 34.49 0.23 34.89 0.01 75 0.11 0.4871
2 0 2 29.46 0.29 25.87 0.12 51 0.12 0.4329
2 4 2 116.19 1.88 119.31 0.03 30 0.21 0.2629
2 3 3 143.21 1.79 147.25 0.03 40 0.20 0.2404
3 2 1 37.96 0.60 36.90 0.03 31 0.16 0.1331
4 3 1 104.48 1.71 107.45 0.03 30 0.22 0.1235
4 0 4 82.12 0.43 80.53 0.02 95 0.25 0.0816
5 2 1 83.28 0.68 82.90 0.00 61 0.24 0.0807
6 1 1 124.59 1.00 127.48 0.02 62 0.27 0.0640
2 6 0 101.93 1.40 101.65 0.00 36 0.28 0.0541

A list of outliers is often obtained at the end of the structure
refinement. When the overall disagreement indices are very
low (1–2%), the reasons for their incorrect reproduction are
experimental errors and/or incorrect or incomplete data-reduc-
tion. Thus a possible (and frequent) solution to this problem is
their omission from the data set. It is now clear that this proce-
dure can be followed only when the bad reflections do not have
high leverage values; however, in this case, they would not
have the possibility to affect the results of the refinement. If
the outliers have high leverage values, their truncation can be
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very deleterious, and the reason for their disagreement must be
checked by further measurement and/or improved corrections.
Conversely, the satisfactory reproduction of (at least most of
the) high-leverage reflections validates the estimate of each
variable.

Another possible explanation for deviance of some reflec-
tions from their calculated values is obviously related to prob-
lems in the refined model; two examples are discussed below
to show the importance of an incorrect choice of the model in
the case of the pyrope structure.

The refinement was done varying the relative occupancies
of the O and O2– scattering curves as described before, and
converged to (Fo-Fc) differences for the reflections 211 and 202
(those with the highest leverage with respect to the derivation
of the occupancies, Table 2) of 4.5% and –0.1%, respectively.
The refinement was also done with only the scattering curve of
neutral oxygen, and converged to the same figures of merit (R
and goodness of fit, GoF), but with (Fo-Fc) differences equal to
10.6% and –8.1%, respectively, for the same reflections (which
therefore became outliers); furthermore, the site scattering at
the X site increased from 12.23 to 12.31 electrons. This is a
good example of the effect of an incorrect model for ionization
state on site-scattering values.

If we remove from the model at convergence the six reflec-
tions with the highest leverage, either with respect to the ex-
tinction or the occupancies, then further refinements of these
two truncated data sets do not diverge significantly. Conversely,
if the same reflections are removed before convergence of the
least-squares refinement, the truncation of such important data
strongly affects the refinement, which ends up with unaccept-
able ionization states and negative anisotropic-displacement
parameters.

This latter example is to be considered as an extreme case,
as any (stepwise) truncation of the data is rarely so drastic;
however, it gives an idea of the bias that may derive from inap-
propriate and inopportune truncation of data.

CAVEATS

We show that the investigation of the different leverage
patterns in different mineral structures can provide a powerful
tool to improve the strategy for structure refinement and to
validate the reliability of its results. Some general caveats are:
(1) The highest the symmetry of the structure, the most impor-
tant is the use of high-resolution data. (2) The scale factor and
the anisotropic extinction coefficient are the variables most
sensitive to accurate measurement of intense reflections. The
exclusion of a single high-leverage intense reflection may lead
to their incorrect estimation, which in turn may lead to unpre-
dictable errors in the estimation of other variables. (3) Refin-
ing the ionization state at all the sites occupied by a single
chemical constituent is critical to obtain reliable results at all
the other sites. (4) Site occupancies (and thus site scatterings
and ionization states) are particularly sensitive to low-θ reflec-
tions. The latter must accurately measured and kept in the re-
fined data set to obtain reliable results especially when
thermodynamic and kinetic modeling is provided. (5) Atom-
displacement parameters are sensitive to high-θ reflections; the

availability of good-quality high-resolution data is particularly
critical in high-symmetry mineral structures.

Work in progress focuses on detailed analysis of the effect
of truncation of single reflections on each refined variable in
olivine and orthopyroxene, the two mineral groups most ger-
mane to kinetic and thermodynamic modeling of order-disor-
der processes at present.
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