THE CRYSTAL STRUCTURE OF ANTIMONIAN HAUCHECORNITE FROM WESTPHALIA

V. KOCMAN and E. W. NUFFIELD
Department of Geo.ogy, University of Toronto, Toronto, Canada M5S 1A1

Abstract

Hauchecornite, $\mathrm{Ni}_{9}\left(\mathrm{Bi}_{1.3} \mathrm{Sb}_{0.7}\right) \mathrm{S}_{8}$, from the type locality of the Friedrich mine, Westphalia is tetragonal, $a=7.300(3), c=5.402(2) \AA ; D_{\text {meas }}=6.35$ $-6.47, D_{\text {calc }}=6.58 \mathrm{~g} / \mathrm{cm}^{-3} ; \mathrm{Z}=1$; space group $\mathrm{P} / / \mathrm{mmm}$. The structure was solved by the heavy atom method from 271 symmetry-independent reflections with $F_{0}^{2}>3_{\sigma} F_{0}^{2}$ co lected on a Picker fourcircle FACS-I diffractometer using MoKa ($\lambda=$ $0.71069 \AA$) radiation. Crystal-boundary and Φ absorption corrections were applied to the data and the structure was refined by full-matrix least-squares using anisotropic temperature factors to an R value of 0.067 ($R_{w}=0.115$). The structure consists of double $\mathrm{Ni}(2)-\mathrm{S}$ ribbons linked by $\mathrm{Bi}-\mathrm{Ni}(1)$ chains, all parallel to [001]. $M(0.7 \mathrm{Sb}+0.3 \mathrm{Bi})$ s.tes occur along ths line of intersection of four double ribbons. Bi and $\mathrm{Ni}(1)$ are octahedraly coordinated. $\mathrm{Ni}(2)$ is in distorted square-planar coordination with 4 S . The M site is coordinated by $8 \mathrm{Ni}(2)$. The closest $\mathrm{Ni}-\mathrm{Ni}$ distances in the double ribbons are 2.639, 2.674 and $2.728 \AA$, suggesting orbital interaction.

Introduction

The generally accepted composition Ni_{9} $(\mathrm{Bi}, \mathrm{Sb})_{2} \mathrm{~S}_{8}$, of hauchecornite from the type locality at the Friendrich mine, Westphalia was established by Peacock (1950) on the basis of a single crystal x-ray study applied to the original analyses reported by Scheibe $(1888,1893)$. Gait \& Harris (1972) have recently discovered slightly differing chemical varieties from other localities and proposed the formula $\mathrm{Ni}_{9}(\mathrm{Bi}, \mathrm{X})_{2} \mathrm{~S}_{8}$ in which $X=S b, A s$ or $T e$, as best representing the known analyses.

Peacock (1950) confirmed the tetragonal symmetry originally proposed for the mineral and obtained the cell dimensions $a=7.29, c=5.40 \AA$ on a crystal chosen from Harvard Mineralogical Museum specimen No. 89710 from the Friedrich mine. His Weissenberg photographs indicated no systematically-absent reflections although the condition, $00 l$ present only with l even, was found to be excluded only by a "very very weak" 003 reflection. The photographs showed the Laue symmetry $4 / \mathrm{mmm}$ and hence the probable space groups $P 4 / \mathrm{mmm}, P 422, P 4 m m, \bar{P} 42 \mathrm{~m}$ and $P \overline{4} \bar{m} \mathrm{~m}^{2}$ were indicated. From this group Peacock elimi-
nated $P 4 \mathrm{~mm}$ because examination of the morphology of crystals on an optical goniometer showed the presence of several tetragonal dipyramids which are incompatible with the point group 4 mm . Gait \& Harris (1972) reported that the x-ray powder patterns of arsenian and tellurian varieties of haucheconite included two weak reflections which could only be indexed on a cell with doubled a and c dimensions. These reflections were not present on Peacock's powder films of Westphalian (antimonian) hauchecornite and are not listed by Berry \& Thompson (1962) for material from the same locality.

The original density measurements in Scheibe (1888,1893) range from 6.35 to $6.47 \mathrm{~g} / \mathrm{cm}^{-3}$. Peacock (1950) measured $6.36 \mathrm{~g} / \mathrm{cm}^{-3}$, on a 17 mg crystal, with a torsion balance.

Experimental

The present study was made on Peacock's crystal - a square plate measuring respectively, $0.29 \times 0.29 \times 0.13 \mathrm{~mm}$ along the a and c axes. The dominant form is $\{001\}$. Before proceeding to the collection of intensity data, long-exposure $\mathrm{CuK} \alpha$ and $\mathrm{MoK} \mathrm{\alpha}$ Weissenberg and precession films were prepared in search of evidence for a doubling of Peacock's cell, for the presence of Renninger reflections and as a test of the diffraction symbol. The $00 l$ row was further probed with an 80 hour $\mathrm{Mo} K \alpha$ exposure of the (hol) reciprocal plane. This work supported Peacock's choice of cell and Laue symmetry. Although we could find no trace of the 003 reflection reported by Peacock, we did observe a faint 001 reflection whose existence was later confirmed by several scans across the peak position on a four-circle Picker diffractometer. Thus hauchecornite from the Friedrich mine in Westphalia has no systematically missing x-ray reflections. In general, however, intensities of reffections with $h+k+$ $l=2 n$ are stronger than those for which the sum is odd, suggesting a pseudo-body centering arrangement of the Bi atoms in the structure.

The cell parameters were calculated from the 20 values of' a number of high angle axial re-
flections measured on the Picker diffractometer. Standard deviations were calculated by hand in the usual way. This gave $a=7.300(3), c=$ $5.402(2) \AA$ and these values were subsequently used in calculating the bond lengths and angles.

Table 1 shows the results of calculating the cell contents of this cell for the measured density $6.47 \mathrm{~g} / \mathrm{cm}^{-3}$ and the best available analyses for Westphalian hauchecornite. The values are very close to $\mathrm{Ni}_{9}\left(\mathrm{Bi}_{1,3} \mathrm{Sb}_{0.7}\right) \mathrm{S}_{8}$ and since the calculated density, $6.58 \mathrm{~g} / \mathrm{cm}^{-3}$, is in reasonably good agreement with the measured values, this formula was used in the determination of the structure.

A total of 289 symmetry-independent reflections were collected on a Picker four-circle FACS-1 diffractometer with MoKa radiation ($\lambda=0.71069 \AA$) in the $\theta-2 \theta$ scan mode over the range $0.02 \leq(\sin \theta) / \lambda \leq 0.70$, using a 0.5° $\min ^{-1}$ scan rate and a 100 s background count on each side of the peak. The data were scaled by reference to two standard reflections monitored throughout the collection and corrected for Lorentz, polarization and both Φ and crystalboundary absorption ($\mu \mathrm{Mo} K_{\alpha}=354.2 \mathrm{~cm}^{-1}$) factors, yielding 271 reflections with $F_{o}^{2}>3 \sigma F_{o}^{2}$ which were taken to be observed. The values of minimum and maximum absorption corrections were 586 and 4913.
table 1. the cell contents of hauchecornite from the friedrich mine WESTPHALIA

Determination and Refinement of the structure

The distribution of E values indicated the presence of a centre of symmetry and consequently the centrosymmetric space group $P 4 / m m m$ was chosen for the determination.
A three-dimensional Patterson map and a similar map based on ($E^{2}-1$) coefficients suggested that Bi was located at $(0,0,0$,$) and$ ($1 / 21 / 21 / 2$). Structure factor calculations for these two positions gave $R=0.68$ (where R is defined as: $\left.\Sigma\left|\left|F_{0}\right|-\left|F_{c}\right|\right| \Sigma\left|F_{0}\right|\right)$. The Ni and S positions were revealed by subsequent F_{n} Fourier maps calculated with successively refined phases. Isotropic refinement reached an R value of 0.121 . The temperature factors of the two Bi positions were grossly different ($0.58,1.72$). In the next step the multipliers for the two Bi positions were allowed to vary while the isotropic temperature factors were constrained to their mean value. This reduced the R value to 0.113 and indicated that the ($0,0,0$) position contained more scattering power than the $(1 / 2,1 / 2,1 / 2)$ location. Consequently the ($1 / 2,1 / 2,1 / 2$) site (hereafter called the M site) was assigned all the Sb , giving it the composition ($\mathrm{Sb}_{0.7} \mathrm{Bi}_{0.3}$). Three cycles of refinement employing weighted averages of Sb and Bi scattering factors for the M site, anomalous dispersion corrections for all the atoms, anisotropic temperature factors and new weights based on a value $\sigma F_{0}=0.095 F_{o}+1.50+9.26 / F_{\mathrm{o}}$ derived from a plot of $\overline{\Delta F}_{0} / \bar{F}_{0}$ vs $1 / \bar{F}_{0}$ gave an R value of 0.076 (0.078 for all 289 reflections). Three reflections ($004,240,550$) which were observed on the films to be situated on strong Laue streaks, gave widely differing background counts on either side of the peak position. It was felt, therefore, that the net intensities were less accurately collected than the bulk of the data. With these reflections deleted from the final refinement the R value reduced to 0.067 and the value of $R_{w}=\left[\Sigma w\left(\left|F_{0}\right|-\left|F_{c}\right|\right)^{2 /}\right.$ $\left.\Sigma w\left|F_{0}\right|^{2}\right]^{1 / 2}=0.115$. Atomic parameters and temperature factors are listed in Table 2; pertinent interatomic distances and angles are given in Table 3. The comparison of observed and calculated structure factors is given in Table 4.

TABLE 2. FRACTIONAL COORDINATES AND TEMPERATURE FACTORS

	x	y	3	${ }^{8} 11$	${ }^{3} 22$	${ }^{3} 33$	${ }^{\beta} 12$	${ }^{\beta} 13$		$B\left(\lambda^{2}\right)$
Bi	0	0	0	52(6)	52(6)	28(7)	0	0	0	0.93
$M^{\prime}\left(\mathrm{Sb}_{0} .^{\mathrm{Bi}} 0.3\right)$	50000	50000	50000	45 (8)	45 (8)	$58(10)$	0	0	0	0.99
$\mathrm{Ni}(1) \mathrm{Na}$	${ }^{0}$	500	50000	29(14)	$29(14)$	45(21)	0	0	0	0.82
$\mathrm{Ni}(2)$ S (1)	18076(46)	50000	$25249(42)$	84(6)	$52(5)$	$51(10)$	0	14(5)	0	1.22
S(1)	31274 $26961(92)$	$\left.26961{ }^{0} 139\right)$	50000	27 33 (10)	$38(10)$ $33(13)$	$23(16)$ $30(16)$	0 $2(9)$	(0	0.64

[^0]Table 4. Observed and calculated structure factors.

The full matrix least-squares program XFLS (Ellison 1962) was used for the structure factor calculations and the refinement. The scattering factors for neutral atoms were taken from Cromer \& Mann (1968). The anomalous dispersion corrections were made from the values computed by Cromer (1965). The standard deviations of interatomic distances and angles were calculated with the program ORFFE (Busing et al. 1964).

Discussion of the Structure

The Bi atoms in the ($0,0,0$) positions in the structure are at the centre of a regular dipyramid consisting of $4 \mathrm{~S}(2)$ in the (001) plane and $2 \mathrm{Ni}(1)$ on the vertical axis. The $\mathrm{Ni}(1)$ atoms occupy the ($0,0,1 / 2$) positions and are similarly octahedrally coordinated by $4 \mathrm{~S}(1)$ in the (001) plane and by 2 Bi in the $(0,0,0)$ positions. Thus the two kinds of polyhedron are linked by - Bi $-\mathrm{Ni}(1)-\mathrm{Bi}-\mathrm{Ni}(1)-$ bonds into continuous chains parallel to $c[001]$ (Fig. 1).
$\mathrm{Ni}(2)$ is in distorted square-planar coordination with $2 \mathrm{~S}(1)$ and $2 \mathrm{~S}(2)$ (Fig. 2). The Ni atom is $0.28 \AA$ out of the S plane. A prominent feature of the structure is the arrangement of the planar polyhedra into continuous zig-zag ribbons, along $c[001]$, which occur in pairs by sharing

	Coordinates	of equivalent	tions	
1 i x, y, z;	ii $\bar{x}, \bar{y}, z ;$	1ii z, y, \bar{z};	iv	$\bar{x}, \bar{y}, \bar{z} ;$
$v \vec{x}, y, z ;$	vi x, \bar{y}, z;	vi $\bar{x}, y, \bar{z} ;$	viii	$x, \bar{y}, \vec{z} ;$
ix \bar{y}, x, z;	$\times y, \bar{x}, z$;	xi \bar{y}, x, \bar{z};	xii	y, \bar{x}, \bar{z};
xili y, x, z;	xiv \bar{y}, \vec{x}, z;	xv y, x,	xvi	$\bar{y}, \bar{x}, \bar{z}$.

Metal-atom polyhedra
$\begin{array}{lll}S(2) & 2.784(7)^{\AA} & 4 \mathrm{x} \\ \mathrm{Ni}(1) & 2.701(1)^{2} & 2 \mathrm{x}\end{array}$

	$\mathrm{NT}(1)$	
$\mathrm{S}(1)$	$2.283(7)$	4 x
$B i$	$2.701(1)$	2 x

Sulphur-atom polyhedra
$\begin{array}{lll}\mathrm{Ni}(1) & 2.283(7) A^{5(1)} & \\ \mathrm{Ni}(2) & 2.323(5) & 4 \mathrm{x} \\ 2.3\end{array}$
Closest $\mathrm{Ni}-\mathrm{Ni}$ distances
$\mathrm{Ni}\left(2^{\mathrm{i}}\right)-\mathrm{Ni}\left(2^{\mathrm{iji}}\right) \quad 2.674(7) \AA$
$\mathrm{Ni}\left(2^{\mathrm{i}}\right)-\mathrm{Ni}\left(2^{\mathrm{ii}}\right) * \quad 2.639(7)$
$\mathrm{N} 1\left(2^{\mathrm{i}}\right)-\mathrm{Ni}\left(2^{\mathrm{iji}}\right) * 2.728(7)$

	$\mathrm{Nj}(2)$	
S(1)	2.323 (5)	2 x
S(2)	2.260 (8)	2 x
H	2.687(3)	$1 \times$
	S(2)	
Bi	$2.784(7)^{\text {R }}$]x
$\mathrm{Ni}(2)$	$2.260(3)$	4 x

*atom located in adjacent cell

\[

\]

Fig. 1. Octahedrally-coordinated $\mathrm{Ni}(1)$ -Bi chains.

Fig. 2. Distorted square-planar coordination of \mathbf{S} about $\mathrm{Ni}(2)$.
the $S(1)-S(1)$ edges of the square polyhedra (Fig. 3). The closest $\mathrm{Ni}-\mathrm{Ni}$ distances within the single ribbons are 2.674 and $2.728 \AA$, and between the single ribbons, $2.639 \AA$, as compared to $2.492 \AA$ in metallic nickel. The distances are so short as to suggest some orbital interaction and a contribution to the strength of the double ribbons.
The double $\mathrm{Ni}(2)-\mathrm{S}$ ribbons are linked to the $\mathrm{Bi}-\mathrm{Ni}(\mathrm{I})$ chains, and hence to neighbouring $\mathrm{Ni}(2)-S$ double ribbons along the two a-axis directions, by the sharing of S atoms, thereby producing a tightly knit three-dimensional structure (Fig. 4).
The $M(0.7 \mathrm{Sb}+0.3 \mathrm{Bi})$ sites, in the $(1 / 2,1 / 2,1 / 2)$ positions are situated along the line of intersection of four double ribbons (Fig. 4). The atoms in these sites are in eight-fold coordination with $\mathrm{Ni}(2)$ occupying the corners of a regular tetragonal prism (Fig. 5). If the relatively weak $\mathrm{Ni}(2)-M$ bonds are taken into account,

Fic. 3. Double Ni(2)-S ribbons.
the square-planar S coordination about $\mathrm{Ni}(2)$ becomes the base of a tetragonal pyramid with the M site at the vertex.

The eight-fold coordination of the M site by Ni suggests that the bonding of Sb and Bi in this position has considerable metallic character. The close agreement of the $\mathrm{Ni}-M$ distance, $2.687 \AA$, with the $\mathrm{Ni}-\mathrm{Bi}$ distance $2.71 \AA$ in the alloy NiBi (Hägg \& Funke 1930) supports this view. The structure determination has shown that of the two Group V-element sites, $(0,0,0)$ and $(1 / 2,1 / 2,1 / 2)$, the less metallic element Sb is ordered into the M site. Since the $\mathrm{Ni}(1)-\mathrm{Bi}$ distance, $2.701 \AA$, in the first site is not signifi-
cantly greater than the $\mathrm{Ni}-M$ distance, geometrical considerations have no bearing on the ordering. Evidently the predominantly covalent bonding at the $(0,0,0)$ sites to 4 S as well as to 2 Ni favours the presence of Bi over Sb .

All S atoms are coordinated by five metal atoms on the corners of a nearly regular tetragonal pyramid. In the $\mathrm{S}(1)$ pyramid, $\mathrm{Ni}(2)$ atoms occupy the base with $\mathrm{Ni}(1)$ at the vertex. $\mathrm{Ni}(2)$ atoms also occupy the base of the $\mathrm{S}(2)$ pyramid but Bi is situated at the vertex.

The atoms of the unit cell are arranged into four layers parallel to (001), at intervals of almost exactly $1 / 4$ c. This layering evidently

Frg. 4. Projection of the hauchecornite structure on (001). Numbers are fractional z coordinates. The coordination for only one $\mathrm{Ni}(1)-\mathrm{Bi}$ chain is shown to emphasize the arrangement of the double $\mathrm{Ni}(2)-\mathrm{S}$ ribbons and the M sifes they enclose.

Fig. 5. Eight-fold coordination of $\mathrm{Ni}(2)$ about the $M(0.7 \mathrm{Sb}+0.3 \mathrm{Bi})$ site.
accounts for the dominant external form found on crystals. Another prominent set of atomic planes, parallel to the $S(1)-S(2)$ planar polyhedra in the double ribbons, might be supposed to manifest itself as one of the external $\{h 0 l\}$ forms measured by Peacock (1950). The planes make an angle of 53.9° with the horizontal. The most likely form, $\{201\}$, has a corresponding angle of 56.3° which is in poor agreement with this value.

The composition of hauchecornite represents an unusual combination of elements. Among minerals, only parkerite $\left(\mathrm{Ni}_{3} \mathrm{Bi}_{2} \mathrm{~S}_{2}\right)$ has a similar composition. A bismuthian ullmannite, $\mathrm{Ni}(\mathrm{Sb}$, $\mathrm{Bi}) \mathrm{S}$, is known but the ratio $\mathrm{Sb}: \mathrm{Bi}=6.6: 1$ and therefore, bismuth is not an essential constituent of the mineral. The structure of parkerite has recently been solved and explained by Flect (1973). It has little in common with the structure of hauchecornite. One point of similarity is the absence of $T S_{3}$ pyramids (in which $T=$

As, Sb, Bi) which Takéuchi \& Sadanaga (1969) regard as the unit of structure that distinguishes a sulphosalt from a sulphide. According to this concept, hauchecornite and parkerite would not be classified as sulphosalts and this is in keeping with practice in reference works.

This work was supported by a grant to E.W.N. from the National Research Council of Canada. The drawings were prepared by Mr. W. M. Jurgeneit of the Department of Geology.

References

Berry, L.G. \& Thompson, R.M. (1962) : X-ray powder data for ore minerals: The Peacock Atlas. Geol. Soc. Amer, Memoir, 85.
Busing, W.R., Martin, K.O. \& Levy, H.A. (1964) : ORFFE. Report ORNL-TM-306, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Cromer, D.T. (1965) : Anomalous dispersion corrections computed from self-consistent field relativistic Dirac-Slater Wave functions. Acta Cryst. 18, 17-23. _ \& Mann, J.B. (1968): X-ray scattering factors computed from numerical Hartree-Fock wave functions. Acta Cryst. A24, 321-324.
Ellison, R.D. (1962) : XFLS, an extensively modified version of ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak, Ridge, Tennessee.
Fleet, M.E. (1973) : The crystal structure of parkerite ($\mathrm{Ni}_{3} \mathrm{Bi}_{2} \mathrm{~S}_{2}$). Amer. Mineral. 58, 435-439.
Gatt, R.I. \& Harris, D.C. (1972) : Hauchecorniteantimonian, arsenian and tellurian varieties. Can. Mineral. 11, 819-825.
Häcg, G. \& Funke, G. (1930) : Röntgenanalyse des Systems Nickel-Wismut. Z. Physik. Chem. 6, 272283.

Peacocr, M.A. (1950) : Hauchecornite. Amer. Mineral. 35, 440-446.
Scheibe, R. (1888) : Zeits. deutsche geol. Gesel, 40, 611.
(1893) : Ueber Hauchecornite, ein Nickelwismuthsulfid von der Grube Friedrich. Jb. Königl. Preuss. geol. Landesanst. Bergakad. 12 (for 1891), 91-125.
Taréuchi, Y. \& Sadanaga, R. (1969): Structural principles and classification of sulfosalts. Zeit. Krist. 130, 346-368.
Manuscript received October 1973, emended November 1973.

[^0]: Fractional coordinates $\times 10^{5}$ and anisotropic thermal parameters $\times 104$; values in parentheses are estimated standard deviations as obtained from the last cycle of least-squares refinement; $T=\exp \left[-\left(\beta_{11^{\hbar^{2}+\beta_{2}}}^{\left.\left.22^{k^{2}+\beta_{3}} 3 z^{2}+2 \beta_{12} h k+2 \beta_{13} h z+2 \beta_{23^{k}}\right)\right]}\right.\right.$

