(c)2001-2005 Mineral Data Publishing, version 1

Crystal Data: Monoclinic. Point Group: 2/m. Crystals are minute, tabular $\{100\}$, commonly pseudorhombohedral, $\{011\}$, $\{11\overline{1}\}$, and many $\{h0l\}$ forms; striated on $\{100\}$ giving a triangular pattern; curved, lamellar, radiated, stellated; foliated, micaceous, to several cm; disseminated scaly massive.

Physical Properties: Cleavage: On $\{100\}$, perfect. Fracture: Uneven. Tenacity: Brittle. Hardness = 3.5-4 D(meas.) = 3.34-3.41 D(calc.) = 3.426

Optical Properties: Transparent to translucent. *Color:* Oil-green to olive-green, pale to dark grass-green, yellowish green to brownish green; green in transmitted light. *Streak:* White, nearly. *Luster:* Vitreous, pearly on cleavages.

Optical Class: Biaxial (+). Pleochroism: X = pale olive-green; Y = paler olive-green; Z = very pale yellowish green. Orientation: X = b; $Y \land c \simeq 15^{\circ}$. Dispersion: r > v, moderate to strong. $\alpha = 1.648-1.658$ $\beta = 1.655-1.662$ $\gamma = 1.662-1.671$ $2V(\text{meas.}) = \leq 90^{\circ}$

Cell Data: Space Group: A2/a. a = 24.940(6) b = 10.131(4) c = 16.722(2) $\beta = 105.60(2)^{\circ}$ Z = 4

X-ray Powder Pattern: Branchville, Connecticut, USA; close to arrojadite. (ICDD 24-66). 3.04 (100), 2.717 (80), 3.22 (60), 2.85 (45), 5.93 (40), 2.770 (40), 2.554 (35)

Chemistry:	(1)	(2)	(3)		(1)	(2)	(3)
P_2C	$_{5}$ 39.57	39.5	39.67	${ m Li_2O}$	0.17	[0.17]	
Al_2	O_3	2.0	2.37	Na_2O	7.46	7.8	5.77
FeO	13.25	13.3	23.42	K_2O	1.52	1.1	2.19
Mn	31.58	32.0	23.13	${\rm H_2O}$	1.65	[1.65]	0.84
Mg0)	0.0		insol.	2.58		
CaC	2.15	2.3	2.61	Total	99.93	[99.82]	100.00

(1) Branchville, Connecticut, USA. (2) Do.; by electron microprobe, total Fe as FeO, total Mn as MnO, Li₂O and H₂O from (1); corresponds to $K_{0.49}Li_{0.24}Na_{5.33}Ca_{0.87}(Mn_{9.55}^{2+}Fe_{3.92}^{2+})_{\Sigma=13.47}Al_{0.83}$ (PO₄)_{11.78}(OH)_{3.88}. (3) KNa₄Ca(Mn, Fe)₁₄Al(PO₄)₁₂(OH)₂ with Mn:Fe = 1:1.

Polymorphism & Series: Forms a series with arrojadite.

Occurrence: A high-temperature (≈ 800 °C) primary mineral in granite pegmatites.

Association: Eosphorite, triploidite, lithiophilite, rhodochrosite, reddingite, fairfieldite (Branchville, Connecticut, USA).

Distribution: In the USA, from Branchville, Fairfield Co., and in the Strickland quarry, Portland, Middlesex Co., Connecticut; in Maine, from Auburn and Poland, Androscoggin Co., and at Hebron, Greenwood, and Newry, Oxford Co.; from the White Picacho district, Maricopa and Yavapai Cos., Arizona; in the Nickel Plate mine, near Keystone, Pennington Co., South Dakota. At the Buranga pegmatite, near Gatumba, Rwanda.

Name: In honor of the Reverend John William Dickinson (1835–1899), Redding, Connecticut, USA, an early collector of Branchville minerals.

Type Material: Yale University, New Haven, Connecticut, Brush 3090; Harvard University, Cambridge, Massachusetts, 110679, 103812; National Museum of Natural History, Washington, D.C., USA, 80561.

References: (1) Palache, C., H. Berman, and C. Frondel (1951) Dana's system of mineralogy, (7th edition), v. II, 717–719. (2) Moore, P.B. and J. Ito (1979) Alluaudites, wyllieites, arrojadites: crystal chemistry and nomenclature. Mineral. Mag., 43, 227–235. (3) Moore, P.B., T. Araki, S. Merlino, M. Mellini, and P.F. Zanazzi (1981) The arrojadite-dickinsonite series, KNa₄Ca(Fe, Mn)²⁺₁₄Al(OH)₂(PO₄)₁₂: crystal structure and crystal chemistry. Amer. Mineral., 66, 1034–1049.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of Mineral Data Publishing.