Verfeinerung der Kristallstruktur von Bournonit [(SbS₃)₂|Cu^{IV}₂Pb^{VII}Pb^{VII}] und von Seligmannit [(AsS₃)₂|Cu^{IV}₂Pb^{VII}Pb^{VII}]*

Von A. EDENHARTER und W. NOWACKI

Abteilung für Kristallographie und Strukturlehre, Universität Bern¹

und Y. TAKÉUCHI

Mineralogical Institute, University of Tokyo²

(Eingegangen am 29. Oktober 1969)

Abstract

The crystal structure of bournonite and seligmannite have been refined by three-dimensional counter data. Four chemical units of PbCuSbS₃ resp. PbCuAsS₃ are in the unit cell of the symmetry C_{2v}^{7} -Pn2₁m. The lattice constants are for bournonite $a = 8.153 \pm 0.003$ Å, $b = 8.692 \pm 0.003$ Å, $c = 7.793 \pm 0.002$ Å, and for seligmannite $a = 8.076 \pm 0.002$ Å, $b = 8.737 \pm 0.005$ Å, $c = 7.634 \pm 0.003$ Å. The refinement of the structures was performed by least-squares method. With anisotropic temperature factors and anomalous dispersion the R factor has been reduced to $4.8^{0}/_{0}$ for bournonite and $2.6^{0}/_{0}$ for seligmannite. The two sulfosalt structures are isotypic. The Pb(1) atoms are surrounded by eight S atoms, the Pb(2) atoms by seven S atoms. The Sb resp. As atoms have a trigonal pyramidal coordination by the S atoms. The SbS₃ resp. AsS₃ pyramids are isolated. The Sb-S resp. As-S distances are in good agreement with the Sb-S resp. As-S covalent-bond length. The Cu atoms are slightly deformed tetrahedrally coordinated by four S atoms. The Cu

Auszug

Die Kristallstruktur von Bournonit und von Seligmannit wurde mit dreidimensionalen Zählrohrdaten verfeinert. Vier Formeleinheiten PbCuSbS₃ bzw. PbCuAsS₃ befinden sich in der Elementarzelle der Symmetrie $C_{2v}^7 - Pn2_1m$. Die Gitterkonstanten sind für Bournonit $a = 8,153 \pm 0,003$ Å, $b = 8,692 \pm 0,003$ Å,

² Mineralogical Institute, Faculty of Science, University of Tokyo, Hongo-Tokyo, Japan.

^{*} Mitt. Nr. 202.

¹ Bern, Sahlistr. 6 (Schweiz).

 $c = 7,793 \pm 0,002$ Å, für Seligmannit $a = 8,076 \pm 0,002$ Å, $b = 8,737 \pm 0,005$ Å, $c = 7,634 \pm 0,003$ Å. Die Strukturverfeinerung wurde mit der Methode der kleinsten Quadrate vorgenommen. Unter Berücksichtigung von anisotropen Temperaturfaktoren und anomaler Streuung wurde für Bournonit $R = 4,8^{0}/_{0}$ und für Seligmannit $R = 2,6^{0}/_{0}$ erhalten. Die Strukturen der beiden Sulfosalze sind isotyp.

Die Pb(1)-Atome sind von acht S-Atomen, die Pb(2)-Atome von sieben S-Atomen umgeben. Die Sb- bzw. As-Atome weisen trigonal-pyramidale Koordination durch die S-Atome auf. Die SbS₃- bzw. AsS₃-Pyramiden sind isoliert. Die (Sb-S)- und die (As-S)-Abstände stimmen gut mit den (Sb-S)- und (As-S)-Abständen bei kovalenter Bindung überein. Die Cu-Atome sind leicht deformiert tetraedrisch von vier S-Atomen umgeben. Die Cu-Tetraeder sind über Ecken miteinander in Richtung der c-Achse verknüpft.

Einleitung

Die von HELLNER und LEINEWEBER (1956) und LEINEWEBER (1957) bestimmten Kristallstrukturen von Bournonit und Seligmannit weisen relativ hohe *R*-Werte (24,7-34,1%) auf; entsprechend ungenau sind die Atomlagen und damit die Abstände und Winkel. 1965 erschien eine Arbeit von PENKOV und SAFIN über "Nuclear quadrupol resonance in bournonite". Die Autoren interpretieren ihre Kernresonanzmessungen an Hand des Strukturmodells von HELLNER und LEINEWEBER und bestätigen das Vorhandensein von SbS₃-Pyramiden, finden daneben aber Sb₂S₃-Komplexe. Nach der Klassifikation der Sulfosalze von NowACKI (1968, 1969) gehören Bournonit und Seligmannit zur Gruppe II.a₁ mit $\varphi = 3$, $\varphi = S : B$; B = As, Sb, Bi). In dieser Gruppe treten isolierte BS₃-Pyramiden auf. Dies steht im Widerspruch zu den Sb₂S₃-Komplexen von PENKOV und SAFIN. Wir haben deshalb die beiden Sulfosalze mit eigenen dreidimensionalen Zählrohrdaten verfeinert.

Experimentelles

Als Untersuchungsmaterial dienten uns Bournonitproben aus dem "Kupfergrüebli" am Calanda (Kanton Graubünden); der Seligmannit stammte aus der Grube Lengenbach im Binnatal (Kanton Wallis). Die beiden Sulfosalze kristallisieren orthorhombisch. Der Habitus ist kurzprismatisch bis tafelig. Aus je einem Bruchstück konnten zwei Kugeln mit r = 0,074 mm (Bournonit) und mit r = 0,097 mm (Seligmannit) geschliffen werden. Die durch den Schleifvorgang zerstörten Oberflächen wurden mit konzentrierter Salpetersäure aufgelöst; anschlie-Bend wurden die beiden Kugeln in konzentrierter Ammoniaklösung gewaschen. Beide Kugeln wurden röntgenographisch untersucht. Aus Rückstrahlaufnahmen mit einer Supper-back-reflection-Kamera (Durchmesser 114,6 mm) wurden die in Tab. 1 zusammengestellten Gitterkonstanten erhalten, die gut mit den aus der Literatur bekannten Werten übereinstimmen. Die Filme wurden mit Linien einer Pulver-

	Eigene Werte	Hellner-Leineweber (1956)
Bournonit	$a = 8,153 \pm 0,003$	8,162
PbCuSbS ₃	$b = 8,692 \pm 0,003$	8,710
	$c = 7,793 \pm 0,002$	7,810
		mittlerer Fehler: $0,012^{0}/_{0}$
	Raumgruppe $C_{2v}^7 - Pn2_1m$	$d_{\rm x} = 4; \ d_{\rm x} = 5.84 \ {\rm g} \cdot {\rm cm}^{-3}$
Seligmannit	$a = 8,076 \pm 0,002$	8,081
PbCuAsS ₃	$b = 8,737 \pm 0,005$	8,747
	$c = 7,634 \pm 0,003$	7,636
		mittlerer Fehler: 0,012%/0
	Raumgruppe: $C_{2v}^7 - Pn2_1m$; 2	$Z=4;~d_{ m x}=5,41~{ m g}\cdot{ m cm}^{-3}$

Tabelle 1. Gitterkonstanten und Raumgruppe von Bournonit und Seligmannit

aufnahme von 99,9% reinem Si geeicht. Aus den Dichten $d=5,83 \,\mathrm{g\,cm^{-3}}$ für Bournonit und $d=5,38 \,\mathrm{g\,cm^{-3}}$ für Seligmannit ergeben sich Z=4Formeleinheiten PbCuSbS₃ bzw. PbCuAsS₃ in der Elementarzelle der Symmetrie $C_{2v}^7 - Pn2_1m$. Die röntgenographischen Dichten berechnen sich zu $d_x = 5,84 \,\mathrm{g\,cm^{-3}}$ bzw. $d_x = 5,41 \,\mathrm{g\,cm^{-3}}$ (siehe Tab. 1). Die chemische Zusammensetzung wurde mit der Elektronenmikrosonde Typ Cameca von H. RUDOLF bestimmt. Die erhaltenen Werte sind in Tab. 2 zusammengestellt. Die Intensitäten wurden mit einem Supper-Pace-Autodiffraktometer mit Cu $K\alpha$ -Strahlung gemessen. Beim Bournonit wurden 590 unabhängige Reflexe, beim Seligmannit 2056

	Bourne	onit		Seligma	nnit
- Pb	44,0%/0	(42,4%)		46,4 %/0	(46,9%/0)
Cu	13,6	(13,0)		15,3	(14,4
\mathbf{Sb}	23,5	(24,9)	As	17,4	(16,9
\mathbf{s}	18,9	(19,7)		21,2	(21,8
	100,0%/0	(100,0%)		100,3%/0	(100,0%)/0
	Anal. Nr.	. 262		Anal. Nr	. 349

Tabelle 2. Mikrosondenanalysen von Bournonit und Seligmannit

Die theoretische Zusammensetzung ist in Klammern angegeben.

äquivalente Reflexe vermessen. Die Intensitäten wurden für Absorption und Lorentz-Polarisation entsprechend einer Kugel mit $\mu \cdot r = 8,22$ (Bournonit) bzw. $\mu \cdot r = 7,88$ (Seligmannit) korrigiert. Gleichzeitig wurde jedem Reflex ein Gewicht zugeordnet: $w = \frac{1}{\sigma^2(F_0)}$. Reflexe mit $I < 2,33 \sigma$ (I) wurden als nicht beobachtet kodifiziert. Anschließend wurden die 2056 äquivalenten Reflexe beim Seligmannit gemittelt. Es verblieben 572 unabhängige Reflexe.

Verfeinerung

Zunächst wurden für Bournonit mit den Parametern von HELLNER und LEINEWEBER Strukturfaktoren berechnet. Wir erhielten $R = 26^{\circ}/_{0}$. Es wurden isotrope Temperaturfaktoren eingesetzt und nach der Methode der kleinsten Quadrate verfeinert. Während mehrerer Zyklen fiel der *R*-Wert auf 11,5°/₀. Von hier an wurde mit anisotropen Temperaturfaktoren weitergerechnet und wir erhielten $R = 6^{\circ}/_{0}$. Da die Pb-Atome einen relativ hohen anomalen Streuanteil besitzen ($\Delta f' = 4$ und $\Delta f'' = 10-9$), wurde die anomale Streuung berücksichtigt. Der Beitrag eines Atoms *r* zum reellen und imaginären Anteil der Strukturamplitude wird

$$\alpha_r = (f_r - \Delta f_r') T \cos 2\pi (hx + ky + lz) - \Delta f_r'' T \sin 2\pi (hx + ky + lz)$$

und

$$eta_r = (f_r - \varDelta f'_r) T \sin 2\pi (hx + ky + lz) + \varDelta f''_r T \cos 2\pi (hx + ky + lz),$$

 $T = \text{Temperaturkoeffizient.}$

Während mehrerer Verfeinerungszyklen fiel der *R*-Wert auf 4,8%/0. Hier wurden die Parameteränderungen kleiner als der mittlere Fehler und die Verfeinerung wurde beendet. Die erhaltenen genauen Bournonit-Parameter wurden mit denen von HELLNER und LEINEWEBER verglichen. Es konnten Differenzen berechnet werden, mit denen die Seligmannit-Parameter entsprechend korrigiert wurden. Die korrigierten Parameter wurden noch mit den Werten verglichen, welche der eine von uns (Y.T.) auf Grund einer Verfeinerung mit Hilfe der Daten von HELLNER und LEINEWEBER erhalten hatte. Es wurden neue Strukturfaktoren berechnet und es ergab sich R = 10%. Mit isotropen Temperaturfaktoren sank der *R*-Wert auf 3,9%. Es wurden anisotrope Temperaturfaktoren eingeführt und der *R*-Wert sukzessive auf 3,1%gesenkt. Unter Berücksichtigung der anomalen Streuung erhielten wir R = 2,6%. Tabelle 3a. Koordinaten und Temperaturfaktoren für die Gleichung $T = \exp - (h^2 B_{11} + h^2 B_{22} + l^2 B_{33} + 2hk B_{12} + 2k l B_{23} + 2l k B_{13})$ mit den Standardabweichungen der Atome in Bournonit

σ _{B.} ,		44	44	50	51	67	113	108	83	81		$\sigma_{B_{33}}$	27	27	41	39	39	64	64	52	62
B_{33}		595	553	549	621	623	568	534	491	527		B_{33}	684	543	508	496	746	546	559	627	200
0253.		00	8	00	00	103	8	8	123	152		$\sigma_{2B_{23}}$	00	00	00	00	55	00	00	69	
		000	000	000	000	- 210	000	000	270	051		$2B_{23}$	000	000	000	000	- 195	000	000	051	018
		35	35	39	41	51	81	81	78	73		$\sigma_{B_{22}}$	20	20	30	30	26	54	49	36	36
-		552	489	346	611	680	369	337	617	594	11	B_{22}	488	469	347	428	612	451	374	485	480
		00	00	00	00	84	00	00	117	112	gmann	$\sigma_{2B_{13}}$	00	00	00	00	47	00	00	77	60
212		000	000	000	000	- 114	000	000	072	020	i un izeu liziert)	$2B_{13}$	000	000	000	000	-127	000	000	040	194
		28	27	43	45	- 20	154	148	100	118	Arome multip	$\sigma_{2B_{12}}$	13	15	35	34	44	85	74	58	63
1		021	033	- 087	015	037	164	034	142	- 071	gen aer ait 105	$2B_{12}$	- 039	033	- 113	- 060	010	- 002	- 078	238	050
		39	40	45	47	63	108	100	80	- 18	sind n	$\sigma_{B_{11}}$	23	24	34	35	37	57	58	49	44
		621	670	671	732	816	768	598	501	717	Werte	B_{11}	406	465	353	324	711	492	362	493	544
2		00	8	00	00	45	00	8	66	73	Die (Die	QZ	00	00	00	00	27	00	8	41	12
3		00000	50 000	50 000	00000	24384	00000	50000	23753	26830	mu aen	~~	00000	50000	50000	00000	24108	00000	50000	22935	102 10
an Ou		17	18	24	30	52	95	88	61	67		σy	6	10	22	22	27	44	42	32	
ħ		99 050	17696	04091	14958	42 275	27917	28860	63870	48165		y	00610	19272	07360	15737	42756	27905	29237	64340	10 202
C R	-	14	14	23	26	49	97	89	70	66		σ_x	8	x	23	26	26	54	48	40	- 10
8		07 380	55709	07 050	50 655	27597	23995	23187	10572	56333		x	07 903	55368	06319	49593	27430	24854	22196	10420	010 22
		Pb(1)	Pb(2)	Sb(1)	Sb(2)	Cu	S(1)	S(2)	S(3)	S(4)			Pb(1)	Pb(2)	As(1)	As(2)	Cu	S(1)	S(2)	S(3)	

Verfeinerung der Kristallstruktur von Bournonit und Seligmannit 401

S(3) S(4) 26

Tabelle 4 a	. Beobachtete	und	berechnete	Strukturampi	litude	en von	Bournoni
-------------	---------------	-----	------------	--------------	--------	--------	----------

h k	1	F	Fe	h k 1	Fol	P _c	h k l	F	Fc	h k l	F	Fe	h k 1	Po	Fe
2 0	0	293.8	311.2	715	103.4	103.9	127	115.4	118.5	0 3 10	41.1	41.3	752	37.7	37.1
4		463.2	524.2	8 0 1 6	47.9	50.1 54.1	2 3	94.1 108.0	99.8 106.7	140	103.9	105.6	8 0 5 3	54+5	55.7 217.1
8		255.2	271.8	1	56.6	61.9	á	77.9	71.3	2	43.9	50.7	1	38.1	37.0
10	1	131.1	102.8	2	44.0	49.3	5	96.3	92.2	3	41.1	45.5	2	174.0	170.4
5		69.7	70.9	í.	41.9	43.0	028	22.2	22.8	5	38.4	42.5	4	182.9	176.8
7		44.8	43.5	5	50.2	49.6	1	115.9	120.6	6	33.7	34.9	5	25.8	26.2
00	2	239.9	219.3	7	34.5	34.7	3	114.3	111.5	8	38.1	37.3	7	24.8	24.4
2		240.0	226.7	017	83.3	85.6	4	20.6	17.8	041	166.9	185.6	054	38.7	39.4
6		127.5	135.7	2	17.5	21.1	6	57.6	55.8	2	299.0	293.0	2	76.6	73.5
8	-	87.6	84.6	3	46.8	45.2	029	31.0	32.7	3	32.6	35.8	3	104.6	102.7
3		98.0	84.6	5	17.2	14.6	2	27.4	23.1	5	39.3	42.8	5	104.4	101.9
5		113.8	102.9	6	20.5	18.4	3	58.4	58.0	6	185.8	186.9	6	50.3	48.9
5		65.8	59.7 65.9	018	84.2	87.1	0 2 10	57.1	57.9	8	92.0	93.6	055	88.1	88.3
0 0	4	188.2	186.3	1	25.3	27.7	1 7 0	43.1	42.8	042	64.2	75.5	1	96.3	101.2
ã		155.4	140.7	3	26.6	25.0	2	91.5	99.8	2	169.2	167.6	3	102.2	100.6
6		78.3	76.6	4	75.4	74.0	3	103.8	111.2	3	150.1	142.8	4	77.1	73.5
ĩc	15	75.4	80.8	6	67.4	68.5	5	103.1	115.9	5	103.0	101.5	6	72.3	69.7
3		76.5	77.2	019	36.1	39.3	6	58.2	62.8	6	108.1	107.7	056	47.9	49.4
7		54.8	53.2	2	47.7	44.5	8	54.2 44.2	57.2	8	33.7	38.3	2	77.9	79.3
0 0	6	171.3	187.4	3	102.3	105.7	9	67.8	70.8	043	55.0	57.8	3	85.5	84.4
4		153.3	152.5	5	79.4	82.6	1	19.5	295.1	2	46,8	41.4	5	81.3	78.6
6		144.8	140.6	0 1 10	57.1	57.5	2	98.0	93.2	3	53.7	52.9	6	55.8	54.5
3	• •	163.5	165.7	2	44.2	43.5	4	208.1	215.5	5	62.9	61.1	1	73.4	73.8
5		154.3	150.5	3	42.7	45.8	5	19.3	15.1	6	27.2	22.8	2	29.3	29.0
ό α	8	116.5	122.9	2	258.9	287.3	7	11.3	12.6	8	23.5	24.8	4	85.5	81.0
2		80.0	84.8	3	27.7	32.3	8	119.3	115.6	044	73.7	74.2	5	56.1	54.1
6		61.0	60.5	5	29.2	32.3	032	167.9	178.2	2	58.6	60.5	1	24.0	21.9
10	9	99.3	103.1	6	160.3	178.0	1	28.7	24.0	3	81.7	77.5	2	35.1	38.3
5		83.6	85.0	á	99.3	101.4	3	12.7	14.8	5	46.0	40.1	059	39.2	41.4
0 0	10	58.6	57 5	9	16.7	18.6	4	141.1	136.0	6	43.4	40.4	1.60	22.1	22.8
1 1	0	105,1	82.2	1	67.8	56.6	6	68.7	70.9	045	155.4	161.2	2	78.6	76.4
2		29.7	11.0	2	264.8	272.7	7	14.2	12.9	1	31.1	31.3	2	32.1	34.9
4		22.1	20.3	4	134.8	141.0	033	281.5	293.6	3	34.2	26.1	5	59.7	59.9
5		63.7	71.1	5	49.0	51.8	1	46.0	47.8	4	139.1	133.7	6	62.0	58.9
7		15.0	11.0	7	20.0	13.7	3	56.0	53.5	6	116.9	110.0	061	132.5	142.2
8		18.5	6.6	8	83.6	82.3	4	250.7	227.1	7	16.7	14.4	1	93.1	94.5
0 1	1	94.1	40.5	022	253.6	264.5	6	148.0	149.5	1	97.6	102.9	3	78.7	81.8
1		59.7	47.8	1	135.4	132.3	7	38.5	39.0	2	76.8	77.2	4	118.5	117.4
ŝ		64.2	66.7	3	148.0	137.7	034	94.1	98.7	á l	32.1	30.1	6	68.9	71.7
4		27.7	20.6	4	203.6	192.7	1	153.7	157.4	5	80.7	78.0	7	49.7	50.7
6		70.7	77.4	6	93.6	87.0	3	143.8	139.0	047	100.4	104.4	1	66.6	69.1
7		50.2	51.7	7	94.2	94.6	4	86.8	80.2	1	22.9 81 7	22.0	2	52.1	50.1
9		6.2	3.3	9	30.5	33.1	6	83.4	80.5	3	18.5	16.4	4	92.3	85.5
0 1	2	243.0	250.9	023	71.8	69.3	7	88.1	86.6	4	89.4	87.3	5	49.0	48.1
2		386.5	375.0	2	58.1	57.0	035	76.3	80.2	6	62.6	61.3	7	48.7	50.4
3		18.2	15.3	3	50.6	39.7	1	36.4	39.2	048	69.7	68.9	063	56.8	59.3
5		14.3	11.9	5	64.9	56.5	3	40.5	37.6	2	44.0	46.9	2	13.2	7.8
6		214.2	221.5	6	35.3	33.9 21.0	4 5	70.2	66.0 27.1	3	131.2	130.0	3	112.3	108.1
8		110.9	115.4	8	31.6	30.6	6	72.6	69.1	049	38,1	38.1	5	113.1	108.4
9	3	7.5	9.6	024	83.9	84.4	7 0 3 6	20.9	25.8	2	48.2	48.1	5	5.3	3.0 63.8
1		107.2	115.4	2	152.7	155.7	1	140.7	146.6	3	45.8	44.5	064	108.5	108.3
23		130.1	122.5	3	79.7	73.5	2	28.0	29.5	150	101.2	106.9	1	30.8 130.3	31.3
4		151.1	140.1	5	35.3	32.8	á	82.5	79.1	3	77.1	81.9	3	24.0	22.5
5		79.4	79.0	6	105.2	99.5 56.3	5	133.3	125.0	4	130.4	143.7	4 5	97.6	89.8
7		55.5	58.3	8	43.9	41.8	7	68.2	68.4	6	43.7	43.8	6	96.3	94.4
8		40.8	43.8	025	67.0	70.3	037	39.5	45.1	7	42.9	44.3	0 6 5	51.1 25.1	50.8 24.9
Ó 1	4	232.6	255.0	2	138.0	144.9	2	67.0	64.9	051	62.3	73.7	2	91.2	90.3
2		264.8	290.5	4	55.4 94.7	24.9 90.0	4	35.1	37.2	2	82.3 94.2	91.2	3	46.5	42.7
3		65.5	64.6	5	58.6	57.2	5	13.7	11.9	3	88.1	89.4	5	29.0	26.1
5		209.0	68.3	7	31.9	30.4	038	40.4	43-9 39-3	4 5	47.3	59.5 50.6	066	02.9 47.9	62.2 45.7
6		187.1	186.9	8	56.1	55.9	1	46.0	45.3	6	61.1	61.7	1	44.4	44.7
8		114.8	117.9	1	83.4	87.5	3	31.0	31.2	8	32.1	34.3	3	50.0	48.8
0 1	5	112.3	116.2	2	106.2	106.9	4	35.8	33.8	052	108.9	113.6	4	40.2	38.4
2		61.6	65.1	4	182.2	174.4	039	77.1	78.3	2	103.1	99.3	067	65.8	29.3 65.8
3		151.4	152.3	5	68.7	66.7 78 9	1	47.6	48.6	3	48.1	43.7	1	93.0	91.5
5		108.8	106.8	7	50.5	50.2	3	48.9	47.0	5	20.0	14.5	3	83.3	82.3
6		42.9	41.6	027	86.0	86.3	4	69.7	67.2	6	71.3	67.7	4	57.4	56.2

h k l	^P o	Fc	h k·l	F	P.	h k l	Fo	Fe	h k 1	Fo	Fe	h k l	F	P _c
068	13.2	11.7	272	149.1	139.1	175	135.4	133.8	381	90.9	87.6	484	75.4	71.7
1	65.5	66.9	3	35.8	34.2	2	50.2	50.0	4	43.2	43.8	085	29.7	29.0
2	14.0	12.2	4	72.1	72.7	3	134.3	129.2	5	68.9	70.1	1	12.7	12.4
170	16.4	16.6	5	21.4	19.4	4	25.5	25.9	082	84.7	82.9	2	32.7	31.4
2	143.8	153.1	6	103.6	95.3	076	39.3	39.5	1	15.6	16.3	086	85.0	82.9
3	20.9	20.2	073	25.8	27.0	1	25.1	25.5	2	62.0	62.2	190	32.4	34.1
4	50.5	51.6	1	65.7	64.9	2	41.3	39.4	3	20.8	20.7	2	20.0	21.1
5	10.4	8.8	2	46.8	47.8	3	22.1	20.1	4	74.1	69.2	3	26.4	26.1
6	102.2	104.3	3	56.8	53.8	077	32.6	33.5	5	11.3	11.4	191	71.0	72.7
071	48.6	55.4	4	23.0	23.0	1	69.4	67.5	083	92.0	90.2	2	63.2	61.9
1	96.3	95.6	5	59.2	55.5	180	17.1	19.1	1	105.4	106.8	3	66.8	64.8
2	94.2	91.0	074	106.0	108.3	2	85.5	89.4	2	58.7	59.6	092	76.3	76.2
3	93.0	91.7	1	30.1	28.5	3	16.1	16.6	5	95.9	93.8	1	18.8	19.3
4	43.9	46.7	2	79.1	73.9	4	79.2	76.1	4	82.3	75.7	2	71.5	74.9
5	71.2	69.3	3	31.6	30.1	5	16.7	15.8	084	86.8	86.2	3	15.3	15.1
6	66.2	63.8	4	93.9	91.5	081	50.2	53.1	1	34.3	33.4	093	53.2	53.1
072	77.5	85.3	5	21,6	21.3	1	90.2	91.7	2	38.7	35.7	1	59.4	58.4
1	30.6	30.7	075	29.2	30.7	2	16.9	27.4	3	36.6	35.7	2	41.9	43.1

Tabelle 4 a. (Fortsetzung)

Als Atomfaktoren wurden die Werte für neutrale Pb-Atome von THOMAS, UMEDA und KING, für neutrale As-, Sb-Atome von FREEMAN und WATSON und für neutrale S-Atome von DAWSON aus den International tables for x-ray crystallography, Band III, verwendet.

Die Verfeinerung wurde mit den Block-Matrix-Programmen von D. VAN DER HELM, Philadelphia, für die IBM 1620- und von P. ENGEL Bern, für die Bull Gamma 30S-Rechenmaschine der Universität Bern ausgeführt. B. RIBÁR schrieb das Programm zur Mittelung äquivalenter Reflexe für die IBM 1620. Die in den Tabellen 6a und b, 7a und bund den folgenden angegebenen Standardabweichungen der Bindungslängen wurden nach folgender Formel berechnet:

$$egin{aligned} \sigma(l) &= \left\{ \left(rac{x_j - x_i}{l}
ight)^2 \left[\sigma^2(x_j) + \sigma^2(x_i)
ight] + \left(rac{y_j - y_i}{l}
ight)^2 \left[\sigma^2(y_j) + \sigma^2(y_i)
ight] \ &+ \left(rac{z_j - z_i}{l}
ight)^2 \cdot \left[\sigma^2(z_j) + \sigma^2(z_i)
ight]
ight\}^{1/2} \,, \end{aligned}$$

diejenigen der Bindungswinkel mittels

$$\begin{split} \sigma(\theta) &= \frac{1}{l_1 \, l_2 \sin \theta} \left\{ (A_1 + A_2)^2 \, \sigma^2(x_i) + A_2^2 \, \sigma^2(x_j) + A_1^2 \, \sigma^2(x_k) \right. \\ &+ (B_1 + B_2)^2 \, \sigma^2(y_i) + B_2^2 \, \sigma^2(y_j) + A_1^2 \, \sigma^2(y_k) \\ &+ (C_1 + C_2)^2 \, \sigma^2(z_i) + C_2^2 \, \sigma^2(z_j) + C_1^2 \, \sigma^2(z_k) \right\}^{1/2} \end{split}$$

 \mathbf{mit}

$$A_{1} = (x_{j} - x_{i}) - \frac{l_{1}}{l_{2}} \cos \theta (x_{k} - x_{i})$$

$$A_{2} = (x_{k} - x_{i}) - \frac{l_{2}}{l_{1}} \cos \theta (x_{j} - x_{i})$$

$$B_{1} = (y_{j} - y_{i}) - \frac{l_{1}}{l_{2}} \cos \theta (y_{k} - y_{i})$$
usw.

Die Atomparameter und Temperaturfaktoren sind für Bournonit in Tab. 3a, für Seligmannit in Tab. 3b zusammengestellt. Die $|F_0|$ - und

26*

Tabelle 4 b. Beobachtete und berechnete Strukturamplituden von Seligmannit

h k l	P	Pe	h k 1	Fo	Fc	b k l	F.	P _c	h k l	Fo	Fc	h k l	Fo	^y c
200	229.8	245.2	921	46.2	45.5	652	62.4	63.0	804	70.5	68.9	745	29.8	29.6
6	166.3	171.3	1	36.1	34.6	062	91.9	88.6	1	87.9	88.7	1	78.4	76.7
8	214.6	218.2	2	76.5	80.0	1	92.6	89.5	2	213.7	223.4	2	101.8	103.7
1	117.2	111.1	4	191.8	198.6	3	92.3	92.0	4	147.9	150.2	á	51.2	50.0
2	14.7	10.6	5	36.8 50.8	34.6	4	69.0 62.8	68.6	5	68.3	68.8 136.4	5	56.7	56.5
4	19.9	20.5	7	7.5	8.3	6	28.4	25.7	7	42.5	41.0	065	22.7	22.7
5	93.1 19.6	94.9 2.8	8 041	99.5	99.7 147.7	7 072	66.0 84.7	66.0 81.4	8 024	90.1 78.2	89.4 75.8	1 2	52.9 91.1	52.5 89.9
7	17.0	15.1	1	33.6	31.1	1	67.1	67.3	1	83.7	84.1	3	33.5	33.9
8	14.0 59.1	9.8 57.4	3	242.4	254.0	3	72.2	72.8	3	94.9	97.1	5	20.9 50.5	50.2
020	198.1	193.6	4	120.7	122.5	4	71.0	69.7	4	58.8	60.2	075	66.5	66.9
2	229.8	236.4	6	148.0	152.1	6	89.7	89.9	6	91.6	91.4	2	55.9	57.2
3	18.5	14.9	7	19-9 79.7	18.8 79.1	082	61.3 47.2	61,1 45.8	7	70.8	69.6 35.7	3	128.6	129.5
5	16.2	15.0	0.51	64.6	63.2	2	45.9	44.0	034	73.2	70.6	085	12.3	7.1
7	145.9	10.0	2	87.9	92.6	4	49.0	49.1	2	99.1	98.3	2	18.7	17.8
8	72.8	73.6	3	101.1	103.4	5	42.2	42.0	3	138.0	140.1	3	15.5	14.6
030	105.2	102.7	5	51.7	51,1	1.	62.4	64.2	5	117.9	117.8	4	95.8	100.4
1	190.6	192.3	6	59.6 75.5	57.9 74.9	2	77.2	77.8 58.5	6	64.6 85.6	63.6 84.6	6 016	103.7	103.9
3	138.0	142.4	8	25.9	25.2	103	183.1	183.9	8	35.1	34.7	1	64.8	65.5
4 5	70.1	149.2	1	71.7	69.3	5	147.2	150.1	1	103.3	102.9	3	59.7 60.6	39.0 61.9
6	59.9	60.0	2	93.9	93.3	7	59.6	58.0	2	52.4	51.0	4	48.7	48.6
8	38.1	38.7	á	95.1	96.8	1	113.2	112.1	4	50.4	48.5	6	31.4	30.2
040	87.6	78.9	5	54.2 67.0	54.6 66.7	2	103.2	102.3 93.0	5	60.4 29.8	60.7 29.3	7026	43.5	41.5
2	25.2	27.8	7	33.5.	34.0	4.	119.2	119.9	7	84.2	82.3	1	78.4	77.7
3	54.0	60.0	1 .	98.8	55.5 97.5	6	66.0	65.6	1	137.0	133.8	3	67.0	82.8 66.4
5	35.6	33.3	2	92.9	92.8	7	52.9	52.3 60.6	2	76.3	75.3	4	142.4	145.1
7	21.7	20.7	4	46.5	45.5	023	79.7	75.7	4	38.0	32.5	6	62.8	62.2
8	36.3	35.3	5	69.0 59.6	68.3 50 5	1.	106.5	106.2	5	113.0	111.9	7	40.0	39.7
î î	144.2	140.7	081	70.3	67.8	3	77.7	78.9	7	62.3	62.8	1	161.1	162.8
2	44.0	43.9	1 2	89.9	89.3 31.7	5	53.9 84,2	54.4	1 0 0 4	46.0	45.7	2 3	24.9 125.4	23.6
4	126.3	127.1	3	86.4	86.1	6	23.4	23.7	2	125.3	124.2	<u>i</u>	69.6	70.4
6	34.5	34.9	5	68.1	68.7	8	27.3	27.2	4	84.6	83.2	6	21.9	20.5
7	56.6	55.5 65.1	091	66.0 77.7	67.5	033	258.3	251.3	5	44.5	44.6	7	74.8	72.9
060	209.0	202.1	2	58.8	60.2	2	202.5	208.5	074	99.1	98.7	1	93.4	91.6
1 2	73.3	72.5	202	192.9	195.7	4	59.4 179.0	188.1	2	60.8	59.8	3	45.4 88.6	43.1 88.8
3	70.8	70.2	4	117.7	113.5	5	34.6	35.5	3	67.3	66.6	4	36.5	35.8
5	106.5	105.8	8	60.8	56.2	7	42.8	43.3	5	42.5	42.8	6	27.3	27.0
6	60.1 31.9	58.4 32.0	012	208.4	205.2	8 0 4 3	96.1 34.0	97.6 30.3	084	81.9 50.7	81.2	056.	57.9 110.4	56.5 109.0
070	41.2	37.4	2	303.2	324.1	1	64.6	62.5	2	35.8	35.5	2	78.0	79.0
2	13.0	128.6	4	159.6	164.2	3	41.2	42.1	4	65.0	65.2	2	45.7	95.9 46.1
3	19.4	18.1	5	25.8	25.5	4	23.9	20.4	094	44.2	45.5	5066	87.9	86.6
5	12.7	6.1	7	13.7	13.4	6	21.9	20.5	105	52.9	52.7	1	40.3	39.8
6 0 8 0	81.7	82.0	9	101.6	100.9	7	9.5	20.2	3	40.2	45.7	2 3	57.6 46.4	57.3
1	72.2	72.3	022	234.5	232.6	053	196.1	189.9	7	37.8	37.9	4	30.3	30.2
3	58.9	60.2	2	94.6	93.6	2	123.6	126.7	1	182.2	192.7	076	49.0	50.0
4	77.4	75.5	3	161.6	165.9	3	29.1	30.0 151.2	2	74.8	75.1	1.	40.2	39.5
090	26.8	24.9	5	86.6	87.6	5	32.1	32.7	í.	72.2	71.6	3	29.3	30.0
1 2	30.4 6.8	29.4	6 7	63.8 109.0	63.1 109.8	7	91.5	92.2	5	44.8	43.7	107	174.9	80.0
3	22.7	22.1	8	85.9	85.2	063	80.0	77.8	7	122.2	122.5	3	152.7	157.2
3	101.8	108.0	1	53.2	46.9	2	5.5	5.1	025	101.1	101.3	017	104.7	103.2
5	90.1 59.3	93+5 58-7	2	86.4 26.3	86.9 17.6	3	107.8	109.5	1 2	46.7	44.3	1 2	49.7	51.3.
9	51.6	51.1	· 4	104.5	106.4	5	113.4	114.1	3	34.3	32.5	3	54.7	54.7
1	99.3	48.8	5	55.6	55.8	073	40.0	9.7	5	38.1	37.7	5	43.5	41.7
2	134.5	132.1	7	11.8	3.6	1	37.0	35.8	6	84.6	85.0	6	29.8	28.1
4	27.4	25.0	042	78.5	75.2	5	27.8	25.0	ó 3 5	24.4	27.1	1	119.7	119.6
5	42.8 71.3	45.8 69.4	1 2	168.8 163.3	169.7	4 5	34.6 34.8	34.1 34.7	1 2	50.9 43.3	50.5 41.0	2	67.8 108.8	70.9 108.5
7	81.0	81.8	3	155.9	164.9	6	39.3	39.2	3	49.5	50.6	÷	45.7	45.7
8 9	20.6	18.9	4 5	58.3 106.5	60.1 110.0	083	99.1 102.6	98.6	4 5	35.0 31.9	19.5	6	92.1 42.8	91.2 42.1
021	144.7	141,2	6	97.6	100.0	2	60.9	63.2	6	29.4	27.9	037	53.7	51.6
2	220.8	237.4	8	38.0	38.1	4	77.2	79.4	045	151.7	150.8	2	99.6	99.3
3	51.0 113.9	52.5 115.6	052	115.4 58.1	110.8 52.5	093	60.1 64.8	59.9 66.7	1 2	51.4 138.3	50.1 144.2	3	27.1 44.2	27.5 42.6
5	73.0	74.6	2	93.8	92.1	2	46.4	47.4	3	45.7	46.0	5	24.2	23.9
7	26.8	27.0	4	70.0 87.1	08.7 88.4	204	134.8	136.0	5	37.6	37.7	047	70.0 65.0	07.8 64.3
8	72.3	71.7	5	29.8	25.8	6	84.4	82.9	6	94.4	95.7	1	11.0	8.7

Fo	Fc	b k 1	F.,	F_c	h k l	Po	F	b k l	F	Fc	h k l	F	Fc
43.7	43.0	177	60.8	60.7	528	90.3	89.2	358	7.8	5.4	039	75.2	75.1
9.3	9.8	208	28.9	30.7	0 3 8	21.2	20.1	068	24.1	23.1	1	38.5	38.7
53.2	52.4	4	40.8	41.5	1	29.8	29.3	1	62.9	64.4	2	66.6	66.2
20.7	18.6	6	19.4	18.6	2	57.3	58.3	109	103.7	110.7	3	40.2	40.2
129.8	126.8	018	90.8	94.7	3	8.3	5.8	3	109.9	110.7	649	79.5	77.2
81.7	79.7	1	25.6	26.9	í.	18.9	18.2	019	40.8	41.1	i	46.7	45.7
50.4	48.7	2	95.8	99.9	ŝ	37.1	37.4	1	83.7	86.3	2	64.8	62.3
81.0	79.5	3	23.4	22.6	048	73.0	71.8	2	45.0	45.4	2 0 10	111.0	112.2
106.0	103.0	á.	79.0	80.0	1	125.6	126.0	3	85.4	85.9	1 1 10	31.6	31.9
57.2	56.3	5	23.1	22.4	2	34.1	34.3	Ĺ	31 3	30.4	2	36 1	37.9
69.5	68.3	0.2.8	42.0	41.4	3	123.1	123.1	0.20	58.0	57.8	0 2 10	61.3	60.6
81.0	79.0	1 0	109.7	112.6	4	59.6	59.2	1 1	68.8	68.7	1	32.3	32.3
33.5	32.8	2	66.5	65.9	0 5 8	54.4	54.5	ò	59.6	59.2	•	,,	,,
72.3	70.5	3	99.0	100.2	1	7.0	3.7	3	64.5	63.8			
25.1	25.7	ú	33.8	32.0	2	50.5	50.3	á	50.4	48.8			
	Fo 43.7 9.3 55.2 20.8 81.7 50.4 106.0 57.2 69.5 33.5 72.3	Fol Fcl 9.3 9.8 57.2 52.4 20.7 18.6 129.8 126.8 129.0 105.0 57.2 56.3 106.0 105.0 57.2 56.3 106.0 105.0 37.5 52.8 20.4 20.7 106.0 105.0 37.5 32.8 72.3 70.5 22.3 70.5 25.1 25.7	$ \begin{vmatrix} \mathbf{F}_0 \\ \mathbf{F}_0 \end{vmatrix} \begin{vmatrix} \mathbf{F}_c \\ \mathbf{F}_s \end{vmatrix} + \begin{bmatrix} \mathbf{F}_c \\ \mathbf{F}_s \end{vmatrix} + \begin{bmatrix} \mathbf{F}_c \\ \mathbf{F}_s \end{vmatrix} + \begin{bmatrix} \mathbf{F}_c \\ \mathbf{F}_s \end{bmatrix} +$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{vmatrix} \mathbf{F}_{0} & \mathbf{F}_{\mathbf{c}} \\ + \mathbf{F}_{0} & \mathbf{F}_{\mathbf{c}} \\ + 5, 7 & 4, 3, 0 & 1 & 7 & 7 & 60, 8 & 60, 7 \\ 9, 3 & 9, 8 & 2 & 0 & 8 & 28, 9 & 30, 7 \\ 51, 2 & 52, 4 & 40, 8 & 41, 5 \\ 20, 7 & 18, 6 & 6 & 19, 4 & 18, 6 \\ 129, 8 & 126, 8 & 0 & 18 & 90, 8 & 94, 7 \\ 81, 7 & 79, 7 & 1 & 25, 6 & 26, 9 \\ 50, 4 & 48, 7 & 2 & 95, 8 & 99, 9 \\ 81, 0 & 79, 5 & 3 & 23, 4 & 22, 6 \\ 61, 0 & 10, 5 & 7 & 23, 4 & 22, 6 \\ 61, 0 & 10, 5 & 7 & 23, 4 & 22, 6 \\ 61, 0 & 10, 5 & 7 & 23, 4 & 22, 6 \\ 61, 0 & 10, 5 & 7 & 23, 4 & 22, 6 \\ 61, 0 & 10, 5 & 7 & 23, 4 & 22, 6 \\ 61, 0 & 10, 5 & 7 & 23, 4 & 22, 6 \\ 61, 0 & 10, 5 & 7 & 23, 4 & 22, 6 \\ 61, 0 & 10, 5 & 7 & 23, 4 & 22, 6 \\ 61, 0 & 10, 5 & 7 & 23, 4 & 22, 4 \\ 81, 0 & 79, 0 & 1 & 109, 7 & 112, 6 \\ 81, 0 & 79, 0 & 1 & 109, 7 & 112, 6 \\ 72, 5 & 70, 5 & 3 & 99, 0 & 100, 2 \\ 72, 5 & 70, 5 & 3 & 99, 0 & 100, 2 \\ 72, 5 & 70, 5 & 3 & 99, 0 & 100, 2 \\ 81, 0 & 71, 0 & 71, 0 & 71, 0 \\ 72, 5 & 70, 5 & 3 & 99, 0 & 100, 2 \\ 72, 5 & 70, 5 & 3 & 99, 0 & 100, 2 \\ 81, 0 & 71, 0 & 71, 0 & 71, 0 \\ 81, 0 & 71, 0 & 71, 0 & 71, 0 \\ 72, 5 & 70, 5 & 3 & 99, 0 & 100, 2 \\ 81, 0 & 71, 0 & 71, 0 & 71, 0 \\ 81, 0 & 71, 0 & 71, 0 & 71, 0 \\ 81, 0 & 71, 0 & 71, 0 & 71, 0 \\ 72, 5 & 70, 5 & 3 & 99, 0 & 100, 2 \\ 72, 5 & 70, 5 & 3 & 99, 0 & 100, 2 \\ 81, 0 & 71, 12, 0 & 71, 12, 0 \\ 81, 0 & 7$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Tabelle 4 b. (Fortsetzung)

 $|F_{\rm e}|$ -Werte, die mit diesen Parametern berechnet wurden, sind für Bournonit in Tab. 4*a*, für Seligmannit in Tab. 4*b* zusammengefaßt. In Tab. 5*a* bzw. 5*b* sind die Hauptachsen der Vibrationsellipsoide für Bournonit bzw. Seligmannit angegeben.

Beschreibung der Strukturen

Die Strukturen von Bournonit und Seligmannit sind isotyp. Geringe Parameterunterschiede sind durch die kürzeren (As—S)-Abstände im Seligmannit verglichen mit den (Sb—S)-Abständen im Bournonit bedingt. Die Atomabstände und Bindungswinkel sind in den Tab.6*a* bzw. 6*b* und 7*a* bzw. 7*b* zusammengestellt. Die Struktur von Seligmannit, parallel *c* bzw. *b* projiziert, ist in Fig.1 dargestellt.

Pb(1), in spezieller Lage mit der Eigensymmetrie C_s —m, besitzt in beiden Sulfosalzen 8er-Koordination. Man kann dieses Koordinationspolyeder als trigonales Prisma //c, gebildet von S(3)—S(3)', S(4)''—S(4)''', S(3)''—S(3)''', darstellen. Das Pb-Atom ist deutlich außerhalb des Zentrums des Prismas gelegen. Ungefähr senkrecht auf der Prismenfläche S(3)—S(3)'—S(3)''—S(3)''' steht die Bindung Pb(1)—S(2)' und desgleichen auf der Prismenfläche S(4)''—S(4)'''— S(3)''—S(3)''' die Bindung Pb(1)—S(1) (Fig. 2a). Eine ähnliche 8er-Koordination haben die Pb-Atome in Hatchit (МАВИМО und NOWACKI, 1967) und Wallisit (ТАКÉUCHI, ОНМАSА und NOWACKI, 1968).

Pb(2), in spezieller Lage, Eigensymmetric C_s-m , hat in beiden Sulfosalzen 7er-Koordination. Dieses Koordinationspolyeder ist ebenfalls ein trigonales Prisma //c. Die Prismenflächen werden von S(4)''-S(4)''', S(3)''-S(3)''' und S(4)-S(4)' gebildet. Pb(2) befindet sich deutlich außerhalb des Zentrums des Prismas. Ungefähr senkrecht auf der Prismenfläche S(4)''-S(4)''', S(4)-S(4)' steht die Pb(2)-S(2)-Bindung (Fig. 2b). Eine ähnliche 7er-Koordination haben die Pb-Atome in Rathit-I (МАRUMO und NOWACKI, 1965), Baumhauerit

	Bisotrop	Achse	В	$\sqrt{u_r^2}$	$\cos \alpha_1$	$\cos \alpha_2$	$\cos \alpha_3$
	1 58 Å 2	1	1 69 Å2	0 146 Å	0.587	0.809	0.000
10(1)	1,0011	2	1.62	0.143	- 0.809	0.587	0.000
		3	1,44	0,135	0,000	0,000	1,000
)				
Pb(2)	1,53	1	1,78	0,150	0,988	0,148	0,000
		2	1,46	0,136	-0,148	0,988	0,000
		3	1,34	0,130	0,000	0,000	1,000
Sb(1)	1.38	1	1.80	0.151	0.986	-0.161	0.000
22(1)	1,00	2	1.02	0.114	0,161	0.986	0.000
		3	1,33	0,130	0,000	0,000	1,000
Sh (9)	1 70	4	1.05	0.155	0.077	0.000	0.000
50(2)	1,70	1	1,95	0,157	0,977	0,208	0,000
		2	1,84	0,192	- 0,208	0,977	1,000
		อ	1,01	0,138	0,000	0,000	1,000
Cu	1,91	1	2,28	0,170	0,713	0,603	-0,356
		2	2,07	0,162	-0,686	0,704	-0,179
		3	1,37	0,132	0,142	0,373	0,916
S(1)	1,51	1	2,09	0,163	0,972	0.231	0,000
		2	1,06	0,115	-0,231	0,972	0,000
		3	1,38	0,132	0,000	0,000	1,000
S(9)	1 20	1	1 50	0.149	0.006	0.085	0.000
N(2)	1,50	1 9	1,55	0,142	0,880	0,005	0,000
		23	1,01	0,113	0,000	0,000	1,000
			, , , , , , , , , , , , , , , , , , ,	ŕ			
S(3)	1,46	1	1,26	0,126	0,959	-0,260	-0,102
		2	2,09	0,162	0,280	0,878	0,386
		3	1,03	0,114	-0,010	- 0,399	0,916
S(4)	1.66	1	1.74	0.148	0.510	0.845	0.156
、 <i>/</i>		2	1.96	0.157	-0.857	0.513	0.019
		3	1,27	0,126	-0,063	-0,143	0,987

Tabelle 5a. Achsenlänge und Richtungscosinus (bezogen auf die Achsen a, b, c) der Vibrationsellipsoide in Bournonit

(ENGEL und NOWACKI, 1969), Gratonit (RIBÁR und NOWACKI, 1969), Meneghinit (EULER und HELLNER, 1960) und Jamesonit (NIIZEKI und BUERGER, 1957).

Die As- bzw. Sb-Atome, in spezieller Lage mit der Eigensymmetrie C_s —m, weisen die übliche trigonal-pyramidale Koordination auf

406

	Bisotrop	Achse	B	$\sqrt{u_r^2}$	$\cos \alpha_1$	$\cos \alpha_2$	$\cos \alpha_3$
Ph(1)	1 38 Å 2	1	1.05 Å 2	0.115 Å	0.009	0.196	0.000
10(1)	1,50 A	2	1,03A-	0.137	-0.126	0,120	0,000
		$\frac{2}{3}$	1,59	0,137 0,142	0,000	0,000	1,000
)]				
Pb(2)	1,30	1	1,20	0,123	0,978	-0,204	0,000
		2	1,44	0,135	0,204	0,978	0,000
		3	1,26	0,126	0,000	0,000	1,000
As(1)	1,05	1	0,81	0,101	0.837	0,547	0.000
		2	1,16	0,121	-0,547	0,837	0.000
		3	1,18	0,122	0,000	0,000	1,000
As(2)	1.10	1	0.83	0.102	0.984	0.175	0.000
	1,10	2	1.32	0.129	-0.175	0.984	0,000
		3	1,15	0,121	0,000	0,000	1,000
Cu	1 09	1	9.17	0 165	0.401	0.655	0 579
Uu	1,02	1 9	2,17	0,100	0,491	0,055	- 0,573
		3	1,52	0,149	0,220	0,524 0,543	0,809
S(1)	1,31	1	1,28	0,127	0,999	0,032	0,000
		2	1,37	0,132	-0,032	0,999	0,000
		3	1,27	0,127	0,000	0,000	1,000
S(2)	1,13	1	0,89	0,106	0.912	0.409	0.000
		2	1,19	0,122	-0,409	0,912	0,000
		3	1,30	0,128	0,000	0,000	1,000
S(3)	1.41	1	1.43	0.134	0 167	0.217	0 961
		2	1.03	0.114	-0.798	0.601	-0.003
		3	1,76	0,149	0,577	0,768	0,000
<i></i>							
8(4)	1,38	1	1,44	0,135	0,534	0,701	-0,470
		2	1,56	0,140	-0,675	0,689	0,261
	1	3	1,13	0,119	0,508	0,178	0,842

Tabelle 5b. Achsenlänge und Richtungscosinus (bezogen auf die Achsen a,b,c) der Vibrationsellipsoide in Seligmannit

(Fig. 2c). Die AsS₃- bzw. SbS₃-Pyramiden sind voneinander getrennt, wie dies bei einem Verhältnis von S:As bzw. Sb = $\varphi = 3$ bei der Zugehörigkeit zur Gruppe II.a₁ entsprechend der Klassifikation der Sulfosalze von NowACKI (1968/69) sein muß. Der mittlere (As—S)-Abstand von 2,296 bzw. 2,271 Å ist in guter Übereinstimmung mit

	Pb(1)	Pb(2)				
S(3)''	2.825 ± 0.005 Å	S(2)	$2.823 \pm 0.007 { m \AA}$			
S(3)'''	2.825 ± 0.005	S(4)"	$2,866 \pm 0.005$			
S(1)	2.851 ± 0.008	S(4)'''	$2,866 \pm 0.005$			
S(2)'	3.048 ± 0.007	S(4)	3.205 ± 0.005			
S(4)''	3,466 + 0,005	S(4)'	3,205 + 0,005			
S(4)'''	3.466 ± 0.005	S(3)''	$3,330 \pm 0,005$			
S(3)	$3,584 \pm 0,005$	S(3)'''	3,330 + 0,005			
S(3)'	$3,584\pm0,005$		- Alter 7			
	Sb(1)		Sb(2)			
S(3)''	2.492 ± 0.005	S(4)''	2.390 + 0.006			
S(3)'''	2.492 ± 0.005	S(4)'''	2.390 ± 0.006			
$\mathbf{S}(2)$	$2,523 \pm 0,007$	S(1)	$2,448\pm0,008$			
	Cu					
S(1)	$2,292\pm0,006$					
S(3)	$2,335\pm0,007$					
S(2)	$2,339 \pm 0,005$					
S(4)	$2,\!405\pm0,\!006$					
	S(1)		S(2)			
Cu	$2,\!292\pm0,\!006$	Cu	$2,339 \pm 0,005$			
Cu′	$2,\!292\pm0,\!006$	Cu′	$2,339 \pm 0,005$			
Sb(2)	$2,\!448 \pm 0,\!008$	Sb(1)	$2,\!523\pm0,\!007$			
Pb(1)	$2,851 \pm 0,008$	Pb(2)	$2,\!823\pm0,\!007$			
		Pb(1)'	$3,\!048 \pm 0,\!007$			
	S(3)		S(4)			
Cu	$2,335\pm0,007$	$\operatorname{Sb}(2)'$	$2,390 \pm 0,006$			
Sb(1)'	$2,\!492 \pm 0,\!005$	Cu	$2,405 \pm 0,006$			
Pb(1)'	$2,825\pm0,005$	Pb(2)'	$2,866 \pm 0,005$			
Pb(2)'	$3,330\pm0,005$	Pb(2)	$3,\!205\pm0,\!005$			
Pb(1)	$3,\!584\pm0,\!005$	Pb(1)'	$3,466 \pm 0,005$			

Tabelle 6a. Zwischenatomare Abstände in Bournonit

demjenigen bei kovalenter Bindung [nach PAULING (1964) 1,21 + 1,04 = 2,25 Å]; desgleichen der mittlere (Sb—S)-Abstand von 2,502 bzw. 2,409 (1,41 + 1,04 = 2,45 Å). Die Cu-Atome, in allgemeiner Lage, sind leicht-deformiert tetraedrisch von vier S-Atomen umgeben (Fig. 3*d*). Die Cu-Tetraeder sind über Ecken miteinander in Richtung der *c*-Achse verknüpft. Der mittlere (Cu—S)-Abstand von 2,342 bzw. 2,330 Å stimmt gut mit demjenigen bei kovalenter Bindung (1,35 + 1,04 = 2,25 Å).

	Pb(1)		Pb(2)
S(1)	$2,791 \pm 0,004$	S(2)	$2,816\pm0,003$
S(3)''	$2,831 \pm 0,003$	S(4)''	$2,\!873\pm0,\!003$
S(3)'''	$2,831 \pm 0,003$	S(4)'''	$2,873 \pm 0,003$
S(2)'	$3,036 \pm 0,003$	S(4)	$3,142 \pm 0,003$
S(4)''	$\textbf{3,391} \pm \textbf{0,002}$	S(4)'	$3,142\pm0,003$
$S(4)^{\prime\prime\prime}$	$3,391\pm0,002$	$S(3)^{\prime\prime}$	$3,\!299\pm0,\!003$
S(3)	$3,\!584\pm0,\!003$	S(3)'''	$\textbf{3,299} \pm \textbf{0,003}$
S(3)'	$3,584 \pm 0,003$		
	As(1)		As(2)
S(3)''	$2,294 \pm 0,003$	S(1)	$2,263 \pm 0,004$
S(3)'''	$2,294\pm0,003$	S(4)''	$2,275\pm0,003$
S(2)	$2,301 \pm 0,004$	S(4)'''	$2,275 \pm 0,003$
	Cu		
S(1)	$2,261 \pm 0,003$		
S(3)	$2,334\pm0,003$		
S(2)	$2,341\pm0,002$		
S(4)	$2,383\pm0,003$		
	S(1)		S(2)
Cu	$2,261 \pm 0,003$	As(1)	$2,301 \pm 0,004$
Cu′	$\textbf{2,261} \pm \textbf{0,003}$	Cu	$2,341 \pm 0,002$
As(2)	$2,263\pm0,004$	Cu'	$2,341 \pm 0,002$
Pb(1)	$2,791 \pm 0,004$	Pb(2)	$2,\!816\pm0,\!003$
		Pb(1)'	$\textbf{3,036} \pm \textbf{0,003}$
	S(3)		S(4)
As(1)'	$2,294 \pm 0,003$	As(2)'	$2,275\pm0,003$
Cu	$2,\!334\pm0,\!003$	Cu	$2,\!383\pm0,\!003$
Pb(1)'	$2,831 \pm 0,003$	Pb(2)'	$2,873\pm0,003$
$\mathrm{Pb}(2)'$	$\textbf{3,299} \pm \textbf{0,003}$	Pb(2)	$3,142\pm0,003$
Pb(1)	$3,\!584\pm0,\!003$	Pb(1)'	$3,391\pm0,002$

Tabelle 6b. Zwischenatomare Abstände in Seligmannit

1,04 = 2,39 Å) überein. Der mittlere Tetraederwinkel berechnet sich zu $109,44^{\circ}$ bzw. $109,40^{\circ}$ (theoretisch $109,47^{\circ}$).

Die Koordinationspolyeder um die vier S-Atome sind in Fig. 3e-h dargestellt. Das S(1)-Atom ist deformiert tetraedrisch von Cu, Cu', Sb(2) bzw. As(2) und Pb(1) umgeben. Der mittlere Tetraeder-Winkel ist 107,33° bzw. 108,01°. S(2) ist deformiert trigonal-bipyramidal von fünf Metallatomen umgeben. Cu, As bzw. Sb, Cu' bilden die Basis,

Pb(1)	Pb(2)	
$egin{array}{rllllllllllllllllllllllllllllllllllll$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
$\begin{array}{lll} & 81,07\pm0,19\\ & 8(3)^{\prime\prime\prime}-Pb(1)\!-\!8(3)^{\prime\prime} & 93,01\pm0,15\\ & 8(3)^{\prime\prime\prime}-Pb(1)\!-\!8(3)^{\prime\prime} & 93,01\pm0,15\\ & 8(1) & -Pb(1)\!-\!8(2)^{\prime\prime} & 153,51\pm0,43\\ & 8(2)^{\prime\prime}-Pb(1)\!-\!8(4)^{\prime\prime\prime} & 133,23\pm0,09\\ & 8(4)^{\prime\prime\prime}-Pb(1)\!-\!8(4)^{\prime\prime\prime} & 62,77\pm0,16\\ & 8(4)^{\prime\prime\prime}-Pb(1)\!-\!8(3) & 100,84\pm0,12\\ & 8(3) & -Pb(1)\!-\!8(3)^{\prime\prime} & 62,19\pm0,15\\ & \end{array}$	$\begin{array}{l} \mathrm{S(4)''-Pb(2)-S(3)'''} \ 128,97\pm0,12\\ \mathrm{S(4)'''-Pb(2)-S(4)} \ 154,88\pm0,55\\ \mathrm{S(4)} \ -\mathrm{Pb(2)-S(4)'} \ 68,55\pm0,17\\ \mathrm{S(4)''-Pb(2)-S(3)''} \ 112,48\pm0,13\\ \mathrm{S(3)''-Pb(2)-S(3)'''} \ 67,52\pm0,16 \end{array}$	
$\mathrm{Sb}(1)$	$\mathrm{Sb}(2)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} S(4)^{\prime\prime\prime}-Sb(2)-S(4)^{\prime\prime\prime\prime} & 98,09\pm0,24\\ S(4)^{\prime\prime\prime}-Sb(2)-S(1) & 93,97\pm0,20\\ S(4)^{\prime\prime\prime}-Sb(2)-S(1) & 93,97\pm0,21 \end{array}$	
S(1)		
$\begin{array}{c ccccc} Cu & -S(1)-Cu' & 111,98\pm0,22^{\circ} \\ & -Sb(2) & 97,85\pm0,25 \\ & -Pb(1) & 122,68\pm0,20 \\ Cu' & -S(1)-Sb(2) & 97,85\pm0,21 \\ & -Pb(1) & 122,68\pm0,27 \\ Sb(2) & -S(1)-Pb(1) & 90,96\pm0,01 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	

Tabelle 7a. Bindungswinkel in Bournonit

S(3)		S(4)	
Cu -S(3) - Sb(1)'	$94,82\pm0,22$	Sb(2)'-S(4)-Cu	$87,57\pm0,20$
-Pb(1)'	$85,76 \pm 0,21$	$-\mathrm{Pb}(2)'$	$96,\!18\pm0,\!06$
-Pb(2)'	$66,50 \pm 0,19$	-Pb(2)	$94,31 \pm 0,27$
Sb(1)' - S(3) - Pb(1)'	$94,\!79 \pm 0,\!05$	$-\mathrm{Pb}(1)'$	$78,25\pm0,22$
$-\mathrm{Pb}(2)'$	$95,\!56\pm0,\!25$	Cu $-S(4)-Pb(2)'$	$74{,}61\pm0{,}19$
-Pb(1)	$82,27 \pm 0,21$	-Pb(2)	$81,\!56\pm0,\!17$
Pb(1)' - S(3) - Pb(1)	$136,\!48 \pm 0,\!10$	Pb(2)'-S(4)-Pb(1)'	$131,22\pm0,08$
Pb(2)' - S(3) - Pb(1)	$71,80 \pm 0,19$	Pb(2) - S(4) - Pb(1)'	$74,84 \pm 0,\!18$

Tabelle 7a. (Fortsetzung)

Tabelle 7b. Bindungswinkel in Seligmannit

Pb(1)	Pb(2)
$\begin{array}{c ccccc} S(1) & -Pb(1) - S(3)^{\prime\prime} & 82,65 \pm 0,08 \\ & -S(3)^{\prime\prime\prime} & 82,65 \pm 0,10 \\ & -S(2)^{\prime} & 156,17 \pm 0,24 \\ & -S(4)^{\prime\prime} & 65,91 \pm 0,03 \\ & -S(4)^{\prime\prime\prime} & 65,91 \pm 0,10 \\ & -S(3) & 136,97 \pm 0,18 \\ & -S(3)^{\prime} & 136,97 \pm 0,05 \\ S(3)^{\prime\prime} - Pb(1) - S(3)^{\prime\prime} & 93,73 \pm 0,10 \\ S(3)^{\prime\prime\prime} - Pb(1) - S(2)^{\prime} & 81,11 \pm 0,06 \\ S(2)^{\prime\prime} - Pb(1) - S(4)^{\prime\prime} & 132,86 \pm 0,04 \\ \end{array}$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{lll} & {\rm S}(4)^{\prime\prime\prime}-{\rm Pb}(1){-}{\rm S}(4)^{\prime\prime\prime\prime} & 60,76\pm0,09\\ & {\rm S}(4)^{\prime\prime\prime\prime}{-}{\rm Pb}(1){-}{\rm S}(3) & 100,56\pm0,06\\ & {\rm S}(3) & {-}{\rm Pb}(1){-}{\rm S}(3)^{\prime} & 58,48\pm0,09 \end{array}$	$S(3)'' - Pb(2) - S(3)''' = 64,10 \pm 0,09$
As(1)	As(2)
$ \begin{array}{cccc} S(3)^{\prime\prime}-As(1)-S(3)^{\prime\prime\prime} & 99,47\pm0,13\\ S(3)^{\prime\prime}-As(1)-S(2) & 96,16\pm0,10\\ S(3)^{\prime\prime\prime}-As(1)-S(2) & 96,16\pm0,12\\ \hline & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline \\$	$\begin{array}{cccc} & \mathrm{S}(1) & -\mathrm{As}(2)\!-\!\mathrm{S}(4)^{\prime\prime} & 97,09\pm0,12\\ & \mathrm{S}(1) & -\mathrm{As}(2)\!-\!\mathrm{S}(4)^{\prime\prime\prime} & 97,09\pm0,13\\ & \mathrm{S}(4)^{\prime\prime}\!-\!\mathrm{As}(2)\!-\!\mathrm{S}(4)^{\prime\prime\prime} & 97,89\pm0,14 \end{array}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

	· · · · · · · · · · · · · · · · · · ·		
S(1)		S(2)	
Cu -S(1)-Cu'	$108,94 \pm 0,11^{\circ}$	As(1)-S(2)-Cu	$121,30 \pm 0,19^{\circ}$
$-\mathrm{As}(2)$	$100,85 \pm 0,15$ 192.02 + 0.10	-Cu'	$121,30 \pm 0,11$
(1)d 1 = (1)d 1	$123,03 \pm 0,10$	$-\mathbf{F}\mathbf{b}(2)$	$103,84 \pm 0.03$
$Cu^{-} = S(1) - As(2)$	$100,85 \pm 0,12$	-Pb(1)	$92,95 \pm 0.01$
-Pb(1)	$123,03 \pm 0,14$	Cu = S(2) - Cu'	$115,19 \pm 0,12$
As(2) - S(1) - Pb(1)	$91,34\pm0,01$	-Pb(2)	$89,09 \pm 0,09$
		-Pb(1)'	$80,92\pm0,09$
		Cu' - S(2) - Pb(2)	$\textbf{89,09} \pm 0,09$
		-Pb(1)'	$80,92\pm0,08$
S(3)		S(4)	
As(1)'-S(3)-Cu	$99,27 \pm 0,13$	As(2)'-S(4)-Cu	$92,77 \pm 0,10$
-Pb(1)'	$97,57 \pm 0,05$	$-\mathrm{Pb}(2)'$	$96,\!37\pm0,\!05$
$-\mathrm{Pb}(2)'$	$97,06 \pm 0,15$	-Pb(2)	$96,\!39\pm0,\!16$
-Pb(1)	$79,93 \pm 0,12$	$-\mathrm{Pb}(1)'$	$77,00 \pm 0,12$
Cu $-S(3)-Pb(1)'$	85,61 + 0,12	Cu $-S(4)-Pb(2)'$	$76,26\pm0,11$
$-\mathrm{Pb}(2)'$	$68,47 \pm 0,10$	-Pb(2)	80,99 + 0,09
Pb(1)' - S(3) - Pb(1)	135,28 + 0,06	Pb(2)'-S(4)-Pb(1)'	129,20 + 0,04
Pb(2)' - S(3) - Pb(1)	$71,00 \pm 0,10$	Pb(2) - S(4) - Pb(1)'	$75,\!47 \pm 0,\!09$

Tabelle 7b. (Fortsetzung)

während Pb(1)' und Pb(2) an der Spitze liegen. Die Koordinationspolyeder um die S(3)- und S(4)-Atome sind stark deformierte vierseitige Pyramiden. Beim S(3)-Polyeder bilden Cu, Pb(1)', Pb(2)', Pb(1) die Basis mit Sb(1)' bzw. As(1)' an der Spitze. Die Basis des

Tabelle 8. (S-S)-Abstände

in den Sb-Pyramiden des Bournonits Sb(1)-Pyramide		in den As-Pyramiden des Seligmannits As(1)-Pyramide	
Sb(2)-Pyramide		As(2)-Pyramide	
S(1) -S(4)'' S(1) -S(4)''' S(4)''-S(4)'''	$3,538 \pm 0,009 { m \AA} \ 3,538 \pm 0,009 { m \AA} \ 3,538 \pm 0,009 \ 3,611 \pm 0,009$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$3,401 \pm 0,004$ Å $3,401 \pm 0,004$ $3,431 \pm 0,004$

Fig. 1. a) Projektion der Struktur von Seligmannit parallel c; b) parallel b

Fig. 2*a*-*d*. Koordination der Pb-, Sb- bzw. As- und Cu-Atome in Bournonit und Seligmannit

Fig. 2e-h. Koordination der S-Atome in Bournonit und Seligmannit

S(4)-Polyeders bilden Cu, Pb(2)', Pb(2), Pb(1)' mit Sb(2)' bzw. As(2)' an der Spitze. S(3) und S(4) liegen etwas unterhalb der Basis.

Die (S-S)-Abstände in den Sb- bzw. As-Polyedern sind in Tab. 8 zusammengestellt. Diese Abstände sind vergleichbar mit dem vander-Waalsschen Bindungsabstand von 3,70 Å nach PAULING.

Bournonit		Seligmannit	
$\begin{array}{c c} \hline Pb(1)-Cu'' \\ -Cu''' \\ -Sb(2) \\ -Sb(1) \\ -Pb(2)' \\ -Sb(1)' \\ -Cu \\ -Cu \\ -Cu' \\ \end{array}$	$egin{array}{l} 3,530\pm0,004{ m \AA}\ 3,789\pm0,002\ 3,921\pm0,001\ 4,060\pm0,001\ 4,081\pm0,002\ 4,521\pm0,004 \end{array}$	$\begin{array}{c} Pb(1)-Cu'' \\ -Cu''' \\ -As(2) \\ -As(1) \\ -As(1)' \\ -Pb(2)' \\ -Cu \\ -Cu \\ -Cu' \end{array}$	$egin{array}{l} 3,529 \pm 0,002{ m \AA}\ 3,634 \pm 0,002\ 3,872 \pm 0,001\ 3,903 \pm 0,002\ 4,004 \pm 0,001\ 4,448 \pm 0,002 \end{array}$
$\begin{array}{c} Fb(2)-Cu'' \\ -Cu''' \\ -Cu \\ -Cu \\ -Cu' \\ -Sb(2) \\ -Pb(1)' \\ -Sb(1) \\ -Sb(2)' \end{array}$	$egin{array}{l} 3,216 \pm 0,004 \ 3,715 \pm 0,004 \ 3,925 \pm 0,001 \ 4,060 \pm 0,001 \ 4,139 \pm 0,002 \ 4,140 \pm 0,003 \end{array}$	$\begin{array}{c} & & \\$	$3,268 \pm 0,002$ $3,634 \pm 0,002$ $3,857 \pm 0,001$ $4,004 \pm 0,001$ $4,079 \pm 0,002$ $4,095 \pm 0,002$
Sb(1)-Cu'' -Cu''' -Cu -Cu'	$3,556 \pm 0,004$ $4,220 \pm 0,004$	$\begin{array}{c c} As(1)-Cu^{\prime\prime} \\ -Cu^{\prime\prime\prime} \\ -Cu \\ -Cu \\ -Cu \\ \end{array}$	$3,527 \pm 0,002$ $4,046 \pm 0,002$
$\begin{array}{c} \mathbf{Sb}(2) - \mathbf{Cu}^{\prime\prime} \\ -\mathbf{Cu}^{\prime\prime\prime} \\ -\mathbf{Cu} \\ -\mathbf{Cu} \\ -\mathbf{Cu}^{\prime} \end{array}$	$3,319\pm0,004$ $3,575\pm0,004$	$\begin{array}{c} As(2)-Cu^{\prime\prime} \\ -Cu^{\prime\prime\prime} \\ -Cu \\ -Cu \\ -Cu^{\prime} \end{array}$	$3,373 \pm 0,002$ $3,487 \pm 0,002$

Tabelle 9. Metall-Metall-Abstände in Bournonit und Seligmannit

Pb-Pb: 3,408 Å; Pb-Sb: 3,361 Å; Pb-As: 3,180 Å; Pb-Cu: 2,980 Å; Sb-Cu: 2,933 Å; As-Cu: 2,752 Å.

(Metall-Metall)-Abstände sind in Tab. 9 enthalten. Die (Me-Me)-Abstände sind durchwegs größer als die Summe der Metallradien. Die (Me-Me)-Bindungen tragen jedoch auch zur Bindung im Kristall bei.

A. EDENHARTER, W. NOWACKI und Y. TAKÉUCHI

Das Koordinationspolyeder um Pb(2) besitzt mit fünf Pb(1)-Polyedern eine gemeinsame Ecke, und mit einem sechsten Pb(1) eine gemeinsame Fläche (4 Schwefelatome gemeinsam). Die Pb(2)-Polyeder sind miteinander über gemeinsame Ecken verknüpft, desgleichen die Pb(1)-Polyeder. Die Sb(1)- bzw. As(1)-Pyramiden haben sowohl mit den Pb(1)-, als auch mit den Pb(2)-Polyedern eine gemeinsame Kante, außerdem noch eine gemeinsame Ecke mit einem Cu-Tetraeder. Die Verknüpfung der Sb(2)- bzw. As(2)-Pyramiden ist genau gleich. Die Pyramiden sind isoliert (kein gemeinsames Schwefelatom). Sie sind lediglich über die Cu-Tetraeder und Pb-Polyeder miteinander verknüpft. Die Cu-Tetraeder sind über Ecken (in Form einer Zickzack-Kette) miteinander in Richtung der c-Achse verknüpft.

Vergleicht man die Projektionen der Strukturen von Bournonit und Seligmannit mit der des Aikinits (PbCuBiS₃), so stellt man fest, daß die Schweratom- und Schwefellagen gut übereinstimmen. Beim dreidimensionalen Vergleich ergeben sich jedoch beträchtliche Unterschiede. Während beim Bournonit und Seligmannit die Punktlagen in der c-Richtung wechselweise durch Pb und Sb bzw. Pb und As besetzt sind, wenn man von kleinen Abweichungen absieht, so liegen beim Aikinit -Pb-S-Pb-S- und -Bi-S-Bi-S-Ketten vor. Das Kupfer besetzt in den drei Strukturen die gleichen tetraedrischen Lücken (OHMASA und NOWACKI, 1969).

Die Ergebnisse dieser Arbeit über Seligmannit stehen in Übereinstimmung mit denjenigen von TAKÉUCHI und HAGA (1970).

Wir sind Herrn Dr. P. ENGEL (Bern) und Herrn Dr. B. RIBÁR (jetzt Sarajevo) für verschiedene Hilfe sehr zu Dank verpflichtet. Die Untersuchung wurde unterstützt vom Schweizerischen Nationalfonds (Projekt Nr. 3508), von der Kommission zur Förderung der wissenschaftlichen Forschung (Projekte Nr. 384/386) und von der Stiftung Entwicklungsfonds Seltene Metalle, wofür an dieser Stelle bestens gedankt sei.

Literatur

- P. ENGEL und W. NOWACKI (1969), Die Kristallstruktur von Baumhauerit. Z. Kristallogr. 129, 178-202.
- R. EULER und E. HELLNER (1960), Zur Kristallstruktur des Meneghinits. Z. Kristallogr. 113, 345-372.
- E. HELLNER und G. LEINEWEBER (1956), Über komplex zusammengesetzte sulfidische Erze. Zur Struktur des Bournonits PbCuSbS₃ und Seligmannits PbCuAsS₃. Z. Kristallogr. 107, 150–154.

- G. LEINEWEBER (1957), Struktur-Analyse des Bournonits und Seligmannits mit Hilfe der Superpositions-Methoden. Z. Kristallogr. 108, 161–184.
- F. MARUMO and W. NOWACKI (1965), The crystal structure of rathite-I. Z. Kristallogr. 122, 434-456.
- F. MARUMO and W. NOWACKI (1967), The crystal structure of hatchite. Z. Kristallogr. 125, 249-265.
- N. NIIZEKI and M. J. BUERGER (1957), The crystal structure of jamesonite. Z. Kristallogr. 109, 161–183.
- W. NOWACKI (1968/69), Zur Klassifikation und Kristallchemie der Sulfosalze.
 Z. Kristallogr. 128, 427-428, Schweiz. Mineralog. und Petrogr. Mitteilungen 49, 109-156 und Acta Crystallogr. B26, 286-289 (Bragg-Festschrift).
- M. OHMASA and W. NOWACKI (1969), Redetermination of the crystal structure of aikinite. Z. Kristallogr. (im Druck).
- L. PAULING (1964), Die Natur der chemischen Bindung. 2. Aufl. Verlag Chemie, Weinheim/Bergstraße, S. 245.
- I. N. PEN'KOV and I. A. SAFIN (1965), Nuclear quadrupole resonance in bournonite. Doklady Akad. Nauk SSSR. 161, 146-148.
- B. RIBÁR und W. NOWACKI (1969), Neubestimmung der Kristallstruktur von Gratonit. Z. Kristallogr. 128, 322–338.
- Y. TAKÉUCHI and N. HAGA (1970), On the crystal structures of seligmannite, PbCuAsS₃, and related minerals. Z. Kristallogr. 130, 254-260.
- Y. TAKÉUCHI, M. OHMASA and W. NOWACKI (1968), The crystal structure of wallisite, PbTlCuAs₂S₅, the Cu analogue of hatchite. Z. Kristallogr. 127, 349-365.