The crystal structure and bonding of lorandite, $\mathrm{Tl}_{2} \mathrm{As}_{2} \mathrm{~S}_{4} *$

By M. E. Fleet

Department of Geology, University of Western Ontario, London, Canada
(Received 23 May 1972)

Abstract

Auszug Die Kristallstruktur von Lorandit $\mathrm{Tl}_{2} \mathrm{As}_{2} \mathrm{~S}_{4}$, in der AsS_{3}-Tetraeder zu spiralförmigen Ketten parallel [010] angeordnet und die Ketten durch Tl-Atome verbunden sind, wird bestätigt und bis zu $R=0,09$ verfeinert. Die Gitterkonstanten sind $a=12,28 \AA, b=11,30 \AA, c=6,10 \AA, \beta=104^{\circ} 5^{\prime} ; Z=4$. Raumgruppe ist $P 2_{1} / a$. Die S-Atome werden von den As- und Tl-Atomen in den Ecken schwach deformierter Tetraeder umgeben. S-Atome, die aufeinanderfolgende As-Atome in der Kette verbinden, haben außerdem noch zwei Tl-Atome zu Nachbarn. Jedes S-Atom, das nur an ein As-Atom gebunden ist, hat drei nächste Tl-Nachbarn; sein Abstand zum As-Atom ist auffallend klein (2,08 und $2,20 \AA$ entsprechend den zwei nicht-äquivalenten As-Atomen der Struktur).

Jedes Tl-Atom liegt einer der AsS_{3}-Pyramidenketten näher als den übrigen; die S-Umgebung der Tl-Atome bildet deformierte tetragonale Pyramiden mit Tl in der Spitze.

Lage und Ausbildung der Spaltbarkeit hängt unmittelbar von Zahl und Typ der Bindungen zwischen den Ketten ab. Die kurzen (As-S)-Abstände weisen darauf hin, da β diese Bindungen bis zu einem gewissen Grad den Charakter von π-Bindungen haben. Die geringe Differenz der Elektronegativitäten von Tl und S , die scheinbare Wechselwirkung zwischen benachbarten Tl-Atomen und der Vergleich mit Tl-haltigen organischen Verbindungen legen die Annahme nahe, daß zwischen den Tl-Atomen und den AsS_{3}-Ketten kovalente Kräfte bestehen.

Abstract

Lorandite $\left(\mathrm{Tl}_{2} \mathrm{As}_{2} \mathrm{~S}_{4}\right)$ is monoclinic with $a=12.28(1) \AA, b=11.30(1) \AA$, $c=6.101(6) \AA, \beta=104^{\circ} 5^{\prime}\left(2^{\prime}\right)$, space group $P 2_{1} / a, Z=4$. The crystal structure, consisting of spiral chains of AsS_{3} pyramids oriented parallel to [010] and connected by $\mathbf{T l}$ atoms, has been confirmed and refined by full-matrix least-squares analysis of three-dimensional diffractometer data to give a value of the conventional residual index of 0.09 . The positions of the S and As atoms are mark-

* Dedicated to Professor M.J. Buerger on the occasion of his 70th birthday.
edly different from those reported in the literature. The present study has shown that the bonds from the two non-equivalent As atoms to the non-bridge S are quite short ($2.08 \AA$ and $2.20 \AA$), that each S is tetrahedrally coordinated to As and Tl and that each Tl position is more closely related to one AsS_{3} pyramid chain than to adjacent chains, the nearest-neighbor S environment of each being a distorted square-pyramidal configuration.

The development of cleavage in lorandite is directly related to the number and type of the interchain bonds. It is suggested that the short As non-bridge S distances in this mineral and in other sulfosalts indicate some degree of π-bonding character in these bonds. Finally, the small difference in the electronegativities of Tl and S , the apparent bonding interaction between adjacent Tl atoms and comparisons with Tl -bearing organic compounds suggest the that Tl atoms are bound by covalent forces to the AsS_{3}-pyramid chains.

Introduction

The sulfosalt lorandite, $\mathrm{Tl}_{2} \mathrm{As}_{2} \mathrm{~S}_{4}$, is found in low-temperature mineral assemblages in association with orpiment, realgar, pyrite and certain other sulfide minerals; the most familiar locality being Allchar, Macedonia. It has monoclinic symmetry with $a=12.27 \AA$, $b=11.34 \AA, c=6.11 \AA, \beta=104^{\circ} 12^{\prime}$ (Hofmann, 1933), space group $P 2_{1} / a, Z=4$. The mineral is deep red and, because of the prominent development of cleavage [(100) excellent, ($\overline{2} 01$) very good, (001) good], it appears flexible in hand specimen, separating easily into cleavage lamellae and fibres (Dana's System of mineralogy, 1946).

Table 1. Positional parameters of Zemann and Zemann

	x	y	z
$\mathrm{Tl}(1)$ in $4 e$	0.051	0.313	0.160
$\mathrm{Tl}(2)$ in $4 e$	0.101	0.056	0.732
$\mathrm{As}(1)$ in $4 e$	0.190	0.820	0.237
$\mathrm{As}(2)$ in $4 e$	0.151	0.585	0.554
$\mathrm{~S}(1)$ in $4 e$	0.125	0.320	0.750
$\mathrm{~S}(2)$ in $4 e$	0.150	0.580	0.200
$\mathrm{~S}(3)$ in $4 e$	0.125	0.790	0.510
$\mathrm{~S}(4)$ in $4 e$	0.200	0.030	0.200

The crystal structure of lorandite was determined from $h 0 l$ and $h k 0$ reflections (Zemann and Zemann, 1959), giving the positional parameters in Table 1, and consists essentially of spiral chains of AsS ${ }_{3}$ pyramids oriented parallel to [010] and linked together by irregularly coordinated Tl atoms. Knowles (1965) reported on a refinement of
the structure based on three-dimensional intensity data, suggesting that the S and As positions were poorly defined in the original study and that the Tl atoms appeared to be in twofold coordination with S .

Experimental

The present study was made on material from Allchar obtained through David New Minerals, Hamilton, Montana. Some difficulty was encountered in obtaining a single crystal from the hand specimen because the mineral deforms very readily when handled so that crystals reduced to a suitable size invariably have bent or twisted cleavage surfaces. The crystal selected was a tabular (010) cleavage fragment bounded by plane surfaces, 0.003 cm thick with a calculated volume of $0.11 \cdot 10^{-6} \mathrm{~cm}^{3}$; it was mounted on the b axis to minimize possible errors in the absorption correction. Reflections recorded on precession camera films of the crystal did not show any evidence of deformation. The systematic absences on these films confirmed the accepted space group for lorandite, $P 2_{1} / a$. The lattice parameters, obtained by least-squares refinement of twelve centred reflections of the crystal on a four-circle diffractometer, are $a=12.276(12) \AA$, $b=11.299(2) \AA, c=6.101$ (6) $\AA, \beta=104^{\circ} 5^{\prime}\left(2^{\prime}\right)$-the standard deviations are in parentheses-and compare quite favourably with published data.

The x-ray intensity data for the structure analysis were taken on a Picker facs 1 four-circle diffractometer system at the University of Western Ontario. All $h k l$ and $h k \bar{l}$ reflections with $20 \geq 45^{\circ}$ were measured using a scintillation detector, Zr-filtered $\operatorname{MoK} \alpha(\lambda=$ $0.7107 \AA$) radiation and the 2θ-scan technique: 40 second stationary background counts, peak-base widths of $2.0^{\circ} 2 \theta$ (uncorrected for dispersion) and a scanning rate of 0.5° per minute. The resulting data were processed by a data-correction routine which corrected for background, Lorentz and polarization effects, and absorption, and assigned standard deviations (σ) to the corrected data based on the summed variances of the counting rates of the peaks and associated backgrounds. Transmission factors for the absorption correction were calculated by the analytical method of de Meulenaer and Tompa (1965) using a value for the linear absorption coefficient of $485.6 \mathrm{~cm}^{-1}$. The calculated transmission factors varied from 0.10 for $31 \overline{6}$ to 0.22 for 122 1. Each reflection whose intensity was less than the associated background plus 3σ was given zero intensity. The final data list contained 1078 reflections of which 404 were "unobserved".

Crystal-structure investigation

At this stage in the investigation the author was unaware that the structure had been confirmed by Knowles (1965), and it was considered desirable to redetermine the structure independently of the earlier work.

The structure factors were converted to normalized structure factors, E, using program FAME (R. B. K. Dewar, Illinois Institute of Technology, Chicago), and, since the structure must be centrosymmetric, the phases of those normalized structure factors with $E \geqslant 1.5$ were assigned by a reiterative application of Sayre's equation using program REL 1 (adapted from R.E.Long, Ph.D.Thesis, University of California, Los Angeles, 1965). E maps, prepared from the solution with the largest consistency index (0.998), clearly indicated two Tl positions, two probable and one possible As positions and various possible S positions. A value of the conventional residual index, R, of 0.33 was obtained using a trial set from these positions. A F_{0} Fourier synthesis resolved all the positional ambiguities, giving a set of atomic positions which resulted in a lowering of the residual index to 0.23 and which proved to be equivalent to the accepted structure of lorandite; the As and S atoms being associated to form spiral chains of AsS_{3} pyramids oriented parallel to [010] (Figs. 1a and 1 b) with two nonequivalent Tl atoms seemingly irregularly coordinated between them.

The structure was refined further by full-matrix, least-squares refinement using program RFINE (L. Finger, Geophysical Laboratory, Washington). RFINE minimizes the function $\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$, where $w=1 / \sigma^{2}, F_{\mathrm{o}}$ is the observed and F_{c} the calculated structure factor, and calculates a conventional residual index, $\quad \Sigma\left|\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right| \Sigma\left|F_{\mathrm{o}}\right| \quad$ and a weighted residual index, $\left.\left[\Sigma w\left(\mid F_{\mathrm{o}}\right)-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma w F_{\mathrm{o}}{ }^{2}\right]^{1 / 2}$. The scattering curves for Tl and As were taken from Cromer and Mann (1968) and that for S^{2-} computed for a nine parameter fit from data in the International tables for x-ray crystallography, Vol. III; the anomalous dispersion coefficients of Cromer (1965) for Tl, As and S were included. Isotropic and anisotropic thermal parameters were added successively to the refinement. However, the values of the anisotropic thermal parameters for the S atoms were somewhat erratic and inconsistent, suggesting that they were reflecting limitations in the data set rather than true thermal motions of the atoms, and the refinement was limited to anisotropic thermal parameters for Tl and As atoms and isotropic thermal parameters for S atoms. The values of the conven-
tional and weighted residual indices obtained for the non-zero intensities used are all isotropic, 0.105 and 0.114 , and anisotropic Tl and As and isotropic S, 0.094 and 0.098 . According to the procedure for

Fig. 1. The crystal structure of lorandite projected parallel to a) c axis, b) b axis; Tl : large open circles with the height in the projection indicated, As: small stippled circles, S: small open circles
testing weighted residuals (Hamilton, 1965), the value of the residual index for the latter refinement is significant, compared to that using isotropic thermal parameters only, at the 0.005 level. The positional

Table 2. Positional and thermal parameters (standard deviations in parentheses)

Posi- tion	x	y	z	$B_{11}(B)$	B_{22}	B_{33}	B_{13}
$\mathrm{Tl}(1)$	$0.0519(3)$	$0.3121(4)$	$0.1619(6)$	$2.6(2)$	$2.1(2)$	$1.3(2)$	$3.4(6)$
$\mathrm{Tl}(2)$	$0.1009(3)$	$0.0560(4)$	$0.7357(7)$	$3.0(2)$	$2.1(2)$	$1.3(2)$	$4.1(6)$
$\mathrm{As}(1)$	$0.1960(8)$	$0.8353(9)$	$0.2266(15)$	$2.7(5)$	$1.5(5)$	$0.7(4)$	$1.8(1.5)$
$\mathrm{As}(2)$	$0.1361(8)$	$0.5865(8)$	$0.5320(16)$	$3.3(5)$	$1.3(5)$	$1.3(5)$	$7.2(1.6)$
$\mathrm{S}(1)$	$0.131(2)$	$0.316(3)$	$0.721(5)$	$3.3(6)$			
$\mathrm{S}(2)$	$0.147(2)$	$0.553(2)$	$0.183(4)$	$1.6(4)$			
$\mathrm{S}(3)$	$0.174(2)$	$0.786(2)$	$0.577(4)$	$2.2(5)$			
$\mathrm{S}(4)$	$0.183(2)$	$0.038(2)$	$0.272(4)$	$1.7(5)$			

and thermal parameters, and associated standard deviations for this refinement are given in Table 2.

The refinement was terminated when the changes to the positional and anisotropic thermal parameters were in the sixth places and the ratios of the changes in these parameters to the errors in the parameters were less than 0.005 . The observed and calculated structure factors are given in Table 3. The refined structure was checked with F_{o} and $F_{o}-F_{\mathrm{c}}$ Fourier maps; no significant residual peaks were detected.

Discussion of the structure

The positional parameters determined in the present study show marked discrepancies from those reported in the original work (Zemann and Zemann, 1959). As expected, the discrepancies are least for the heavy Tl atoms and greatest for the lighter S atoms. Thus, although the structure was outlined correctly, the bond distances and bond angles reported for the spiral chains of AsS_{3} pyramids have little relation to the actual values. The ranges of the interatomic distances quoted by Knowles (1965) are similar to those of the present study, suggesting that the positional parameters of the two refinements would be quite comparable.

Some interatomic distances and bond angles of interest are given in Tables 4 and 5 respectively (the atom identification labels are consistent with the usage in Fig. 2; atoms marked by an asterisk are located in adjacent unit cells). The As-S bonds which form bridge bonds between the AsS_{3} pyramids are similar in length (2.29 Å to $2.32 \AA$) to the average bridge bond ($2.31 \AA$) obtained from a survey of well refined sulfosalt structures (Takédchi and Sadanaga, 1969). However, the non-bridge As-S bonds are somewhat shorter (2.08 \AA

Table 3. Observed and calculated structure factors

Table 4. Interatomic distances in lorandite
(standard deviations in parentheses)

$\mathrm{As}(1)-\mathrm{S}(1)$	$2.08(1) \AA$	$\mathrm{Tl}(1)-\mathrm{S}(1)$	$3.31(3) \AA$	$\mathrm{Tl}(2)-\mathrm{S}(1)$	$2.97(3) \AA$
$\mathrm{As}(1)-\mathrm{S}(3)$	$2.29(3)$	$\mathrm{Tl}(1)-\mathrm{S}(1)^{*}$	$3.07(3)$	$\mathrm{Tl}(2)-\mathrm{S}(2)$	$3.014(5)$
$\mathrm{As}(1)-\mathrm{S}\left(4^{\prime}\right)^{*}$	$2.32(3)$	$\mathrm{Tl}(1)-\mathrm{S}\left(2^{\prime}\right)$	$2.96(2)$	$\mathrm{Tl}(2)-\mathrm{S}\left(3^{\prime}\right)$	$3.93(3)$
$\mathrm{As}(2)-\mathrm{S}(2)$	$2.20(2)$	$\mathrm{Tl}(1)-\mathrm{S}\left(2^{\prime \prime \prime}\right)$	$3.19(2)$	$\mathrm{Tl}(2)-\mathrm{S}(4)$	$3.19(2)$
$\mathrm{As}(2)-\mathrm{S}(3)$	$2.30(3)$	$\mathrm{Tl}(1)-\mathrm{S}(3)$	$3.36(1)$	$\mathrm{Tl}(2)-\mathrm{S}(4)^{*}$	$3.23(2)$
$\mathrm{As}(2)-\mathrm{S}(4)$	$2.32(1)$	$\mathrm{Tl}(1)-\mathrm{S}\left(3^{\prime \prime \prime}\right)$	$3.69(2)$	$\mathrm{Tl}(2)-\mathrm{S}\left(3^{\prime \prime \prime}\right)$	$3.89(1)$
		$\mathrm{Tl}(1)-\mathrm{S}(4)$	$3.48(2)$	$\mathrm{Tl}(2)-\mathrm{S}\left(4^{\prime \prime}\right)$	$3.63(1)$
$\mathrm{S}(1)-\mathrm{S}(3)$	$3.35(2)$	$\mathrm{Tl}(1)-\mathrm{Tl}(2)^{*}$	$4.032(6)$	$\mathrm{Tl}(2)-\mathrm{Tl}\left(2^{\prime \prime}\right)$	$3.541(6)$
$\mathrm{S}(1)-\mathrm{S}\left(4^{\prime}\right)^{*}$	$3.38(3)$				
$\mathrm{S}(2)-\mathrm{S}(3)$	$3.52(3)$				
$\mathrm{S}(2)-\mathrm{S}(4)$	$3.47(2)$				
$\mathrm{S}(3)-\mathrm{S}\left(4^{\prime}\right)^{*}$	$3.42(3)$				
$\mathrm{S}(3)-\mathrm{S}(4)$	$3.31(3)$				

Table 5. Bond angles in lorandite
(standard deviations in parentheses)

$\mathrm{S}(1)-\mathrm{As}(1)-\mathrm{S}\left(3^{\prime}\right)$	$100.2(1.1)^{\circ}$	$\mathrm{As}(1)-\mathrm{S}(1)-\mathrm{Tl}(1)$	$101.1(1.0)^{\circ}$
$\mathrm{S}(1)-\mathrm{As}(1)-\mathrm{S}\left(4^{\prime}\right)^{*}$	$100.5(1.2)^{\circ}$	$\mathrm{As}(1)-\mathrm{S}(1)-\mathrm{Tl}(1)^{*}$	$113.2(1.2)$
$\mathrm{S}(3)-\mathrm{As}(1)-\mathrm{S}\left(4^{\prime}\right)^{*}$	$95.9(1.0)$	$\mathrm{As}(1)-\mathrm{S}(1)-\mathrm{Tl}(2)$	$103.2(1.2)$
$\mathrm{S}(2)-\mathrm{As}(2)-\mathrm{S}(3)$	$102.9(1.1)$	$\mathrm{Tl}(1)-\mathrm{S}(1)-\mathrm{Tl}(1)^{*}$	$145.6(0.9)$
$\mathrm{S}(2)-\mathrm{As}(2)-\mathrm{S}(4)$	$100.5(0.9)$	$\mathrm{Tl}(1)-\mathrm{S}(1)-\mathrm{Tl}(2)$	$90.6(0.8)$
$\mathrm{S}(3)-\mathrm{As}(2)-\mathrm{S}(4)$	$91.5(0.9)$	$\mathrm{Tl}(1)^{*}-\mathrm{S}(1)-\mathrm{Tl}(2)$	$83.7(0.8)$
		$\mathrm{As}(2)-\mathrm{S}(2)-\mathrm{Tl}\left(1^{\prime}\right)$	$109.9(0.9)$
$\mathrm{S}(1)-\mathrm{Tl}(1)-\mathrm{S}(1)^{*}$	$145.6(0.9)$	$\mathrm{As}(2)-\mathrm{S}(2)-\mathrm{Tl}\left(1^{\prime \prime \prime}\right)^{*}$	$94.7(0.9)$
$\mathrm{S}(1)-\mathrm{Tl}(1)-\mathrm{S}\left(2^{\prime}\right)^{*}$	$85.9(0.7)$	$\mathrm{As}(2)-\mathrm{S}(2)-\mathrm{Tl}(2)$	$98.1(0.8)$
$\mathrm{S}(1)-\mathrm{Tl}(1)-\mathrm{S}\left(2^{\prime \prime \prime}\right)$	$131.1(0.7)$	$\mathrm{Tl}\left(1^{\prime}\right)-\mathrm{S}(2)-\mathrm{Tl}\left(1^{\prime \prime \prime}\right)^{*}$	$100.4(0.6)$
$\mathrm{S}(1)-\mathrm{Tl}(1)-\mathrm{S}(3)$	$60.3(0.6)$	$\mathrm{Tl}\left(1^{\prime}\right)-\mathrm{S}(2)-\mathrm{Tl}(2)$	$133.9(0.8)$
$\mathrm{S}(1)^{*}-\mathrm{Tl}(1)-\mathrm{S}\left(2^{\prime}\right)^{*}$	$79.6(0.8)$	$\mathrm{Tl}\left(1^{\prime \prime \prime}\right)^{*}-\mathrm{S}(2)-\mathrm{Tl}(2)$	$113.2(0.8)$
$\mathrm{S}(1)^{*}-\mathrm{Tl}(1)-\mathrm{S}\left(2^{\prime \prime \prime}\right)$	$76.7(0.7)$	$\mathrm{As}(1)-\mathrm{S}(3)-\mathrm{As}(2)$	$101.1(1.1)$
S()$^{*}-\mathrm{T}(1)-\mathrm{S}(3)$	$85.6(0.7)$	$\mathrm{As}(1)-\mathrm{S}(3)-\mathrm{Tl}(1)$	$9.2(0.8)$
$\mathrm{S}\left(2^{\prime}\right)^{*}-\mathrm{Tl}(1)-\mathrm{S}\left(2^{\prime \prime \prime}\right)$	$79.7(0.6)$	$\mathrm{As}(1)-\mathrm{S}(3)-\mathrm{Tl}\left(2^{\prime}\right)^{*}$	$98.4(0.8)$
$\mathrm{S}\left(2^{2}\right)^{*}-\mathrm{Tl}(1)-\mathrm{S}(3)$	$73.9(0.6)$	$\mathrm{As}(2)-\mathrm{S}(3)-\mathrm{Tl}(1)$	$107.1(0.9)$
$\mathrm{S}\left(2^{\prime \prime \prime}\right)-\mathrm{Tl}(1)-\mathrm{S}(3)$	$150.4(0.6)$	$\mathrm{As}(2)-\mathrm{S}(3)-\mathrm{Tl}\left(2^{\prime}\right)^{*}$	$148.6(1.0)$
$\mathrm{S}(1)-\mathrm{Tl}(2)-\mathrm{S}(2)$	$83.3(0.7)$	$\mathrm{Tl}(1)-\mathrm{S}(3)-\mathrm{Tl}\left(2^{\prime}\right)^{*}$	$95.2(0.6)$
$\mathrm{S}(1)-\mathrm{Tl}(2)-\mathrm{S}\left(3^{\prime}\right)$	$147.1(0.7)$	$\mathrm{As}\left(1^{\prime}\right)-\mathrm{S}(4)-\mathrm{As}(2)$	$102.1(1.0)$
$\mathrm{S}(1)-\mathrm{Tl}(2)-\mathrm{S}(4)$	$88.2(0.7)$	$\mathrm{As}\left(1^{\prime}\right)-\mathrm{S}(4)-\mathrm{Tl}(2)$	$87.3(0.8)$
$\mathrm{S}(1)-\mathrm{Tl}(2)-\mathrm{S}(4)^{*}$	$94.8(0.7)$	$\mathrm{As}\left(1^{\prime}\right)-\mathrm{S}(4)-\mathrm{Tl}(2)^{*}$	$102.3(0.9)$
$\mathrm{S}(2)-\mathrm{Tl}(2)-\mathrm{S}\left(3^{\prime}\right)$	$72.8(0.6)$	$\mathrm{As}(2)-\mathrm{S}(4)-\mathrm{Tl}(2)$	$122.5(0.9)$
$\mathrm{S}(2)-\mathrm{Tl}(2)-\mathrm{S}(4)$	$67.5(0.6)$	$\mathrm{As}(2)-\mathrm{S}(4)-\mathrm{Tl}(2)^{*}$	$89.9(0.8)$
$\mathrm{S}(2)-\mathrm{Tl}(2)-\mathrm{S}(4)^{*}$	$77.0(0.6)$	$\mathrm{Tl}(2)-\mathrm{S}(4)-\mathrm{Tl}(2)^{*}$	$143.8(0.8)$
$\mathrm{S}\left(3^{\prime}\right)-\mathrm{Tl}(2)-\mathrm{S}(4)$	$62.2(0.6)$		
$\mathrm{S}\left(3^{\prime}\right)-\mathrm{Tl}(2)-\mathrm{S}(4)^{*}$	$101.3(0.6)$		
$\mathrm{S}(4)-\mathrm{Tl}(2)-\mathrm{S}(4)$	$143.8(0.8)$		

and $2.20 \AA$) than the average for bonds of this type ($2.26 \AA$) for other sulfosalt structures. The bond angles within the chains are within the ranges for bridged AsS_{3} pyramids in sulfosalts, although the $\mathrm{S}(3)-$ $\mathrm{As}(1)-\mathrm{S}(4)$ and $\mathrm{S}(3)-\mathrm{As}(2)-\mathrm{S}(4)$ bond angles are significantly smaller $\left(95.9^{\circ}\right.$ and $\left.91.5^{\circ}\right)$ than the remainder, which fall in the range 100° to 103°.

In the present representation of the structure, each S atom is in tetrahedral coordination (Fig. 2); the bridge S atoms are coordinated to two As and two Tl whereas the non-bridge S atoms are coordinated

Fig. 2. Tl and S environments in lorandite; the structure is projected parallel to c axis and rotated 5° about [100], dashed lines: interatomic distances greater than $3.40 \AA$, broken circles: atoms in unit cells above and below that represented
to one As and three Tl. Each tetrahedron is slightly distorted, but most of the bond angles do not depart too greatly from the ideal tetrahedral value.

Both Tl atoms are coordinated on the sides of the AsS_{3} pyramid chains, adjacent to recesses formed in the chains. Each Tl position is more closely related to one chain than to neighboring chains. Although the S coordination polyhedra about the Tl atoms do appear irregular, closer inspection indicates many similarities in both positions. If an arbitrary limit of $3.40 \AA$ is placed on the $\mathrm{Tl}-\mathrm{S}$ distances,
each Tl atom is in fivefold coordination with S forming a flattened square pyramid. The bond distances and angles indicate considerable distortion from this ideal arrangement (Table 5). The Tl atoms are located beneath the base of each pyramid allowing for possible interactions with other Tl atoms and with more distant S and As atoms (Fig. 2). The closest $\mathrm{Tl}-\mathrm{S}$ distances are, for both $\mathrm{Tl}(1)$ and $\mathrm{Tl}(2)$, to the non-bridge S atoms $[S(1)$ and $S(2)]$ and, these, presumably, correspond to the twofold coordination proposed by Knowles. However, although these bond distances may represent the strongest bonding interactions, the $\mathrm{Tl}-\mathrm{S}$ bond distances do show a gradational increase between $2.96 \AA$ and $3.89 \AA$ making definition of the nearestneighbor coordination polyhedra quite arbitrary.

The environments of the Tl atoms in lorandite are somewhat similar to the probable environment of Tl in the isomorphic sulfosalts, hatchite (Marumo and Nowacki, 1967) and wallisite (Takédehi and Ohmasa, 1968), in which the $\mathrm{Tl}, \mathrm{Pb}(2)$ positions are coordinated to two S (with interatomic distances of $2.99 \AA$ and $3.14 \AA$) and more distant S and As. In hatchite the $\mathrm{Tl}, \mathrm{Pb}(2)$ positions approach each other as close as $3.78 \AA$. Short $\mathrm{Tl}-\mathrm{Tl}$ distances have been reported also from the sulfides of thallium. $\mathrm{Tl}_{2} \mathrm{~S}$ has a distorted $\mathrm{Cd}(\mathrm{OH})_{2}$ ($C 6$ type) structure, in which each Tl is coordinated to three S , with $\mathrm{Tl}-\mathrm{S}$ distances ranging from $2.61 \AA$ to $3.15 \AA$, and to twelve Tl with $\mathrm{Tl}-\mathrm{Tl}$ distances from $3.50 \AA$ to $4.63 \AA$ (Ketelaar and Gorter, 1939). In TlS, Tl apparently exists in both the Tl^{+}and Tl^{3+} states (HaHN and Klingler, 1949). The Tl^{3+} is in tetrahedral coordination, with $\mathrm{Tl}-\mathrm{S}$ distances of $2.60 \AA$, and the Tl^{+}is in eightfold coord nation with Tl-S distances of $3.32 \AA$; Tl-Tl distances are $3.40 \AA$ and $3.88 \AA$. In fact, in most of the investigated Tl-bearing sulfides and sulfosalts the Tl atoms have a tendency to interact with each other; in lorandite the closest $\mathrm{Tl}-\mathrm{Tl}$ distances are $3.54 \AA[\mathrm{Tl}(2)-\mathrm{Tl}(2)]$ and $4.03 \AA$ $[\mathrm{Tl}(1)-\mathrm{Tl}(2)]$.

The chains of AsS_{3} pyramids are connected together in the lorandite structure by the Tl atoms. However the Tl atoms are associated more closely with one chain than with neighboring chains: of the ten $\mathrm{Tl}-\mathrm{S}$ distances less than $3.40 \AA$ in each formula unit, seven are within a single chain, only two connect directly chains lying within the same (100) plane and one connects chains lying within the same ($\overline{2} 01$) plane: chains lying within the same (001) plane are connected directly by a strong $\mathrm{Tl}-\mathrm{Tl}$ interaction. Clearly, the most cohesive bonding forces are within the chains (primarily As-S and Tl-S ones),
and the surfaces of weakness giving rise to cleavage in the crystals should pass between the chains. The development of cleavage in the mineral [(100) excellent, ($\overline{2} 01$) very good, (001) good] is just that predicted on the basis of the interchain bond distribution, since a (100) cleavage requires the disruption of only two $\mathrm{Tl}-\mathrm{S}$ bonds and one $\mathrm{Tl}-\mathrm{Tl}$ interaction per two formula units, a ($\overline{2} 01$) cleavage requires the disruption of four $\mathrm{Tl}-\mathrm{S}$ bonds and one $\mathrm{Tl}-\mathrm{Tl}$ interaction and a (001) cleavage requires the disruption of six $\mathrm{Tl}-\mathrm{S}$ bonds (Fig.3).

Fig. 3. The development of cleavage in lorandite
There are several interesting features in the structure of lorandite which are helpful to an understanding of the nature of the chemical bonding in the compound. These can be enumerated as follows:
(i) the relatively short As-non-bridge S bonds
(ii) the bond angles between the bridge S and As approach 90°
(iii) the apparent tetrahedral environment of S
(iv) the apparent fivefold coordination of both Tl atoms by S
(v) the close approach of the Tl atoms to each other.

The electron configuration of the valency electrons of the constituent atoms are $\mathrm{Tl}-6 s^{2} 6 p^{1}, \mathrm{As}-4 s^{2} 4 p^{3}, \mathrm{~S}-3 s^{2} 3 p^{4}$. It is generally accepted that the bonding within the groups of AsS_{3} pyramids in sulfosalts is covalent; the principal evidence for this being the small difference in electronegativity of $\operatorname{As}(2.0)$ and $S(2.5)$ and the similarity
of the As-S distances with the accepted covalent-bond 'ength. Assuming that the Tl atoms exist in the common $1+$ oxidation state, each would donate the single $6 p$ electron to form an effective $\mathrm{As}_{2} \mathrm{~S}_{4}-$ ligand group, so that there are 36 electrons available for the 16 single bonds required in each formula unit. A molecular orbital treatment of this situation could involve $s p^{3}$ tetrahedral hybrid orbitals on both the As and S atoms, leading to six As-S σ bonds, ten $\mathrm{Tl}-\mathrm{S}$ σ bonds (or their ionic equivalents) and doubly occupied non-bonding σ orbitals on the As atoms. The short As-non-bridge S distances clearly indicate some degree of multiple bonding. Now, the development of $d \pi-p \pi$ bonding is a marked feature of many compounds and groups formed of combinations of the lighter members of the chemical groups V and VI (Cotton and Wilkinson, 1966), leading to shorter interatomic distances than expected for single bonds, and we can refer these shorter As-S distances to the overlap of the "non-bonding" $s p^{3}$ hybrid orbital on the As atoms with the empty $d_{z^{2}}$ and $d_{x^{2}-y^{2}}$ orbitals on the $S(1)$ and $S(2)$ atoms. This would necessitate some modification of the concept of four symmetrical $s p^{3}$ tetrahedral hybrid orbitals on each As, so that the two orbitals bonded to the bridge S would have a large p character-resulting in a bond angle approaching 90°-and the orbital bonded to the non-bridge S would have a large s character allowing the fourth to be essentially a p orbital for π-bond formation with the d orbitals on the nonbridge S. It follows that the short As-non-bridge S bonds in other sulfosalts may reflect some degree of multiple-bond formation also.

The nature of the $\mathrm{Tl}-\mathrm{S}$ bonds represents a more difficult problem. A convenient explanation is to resort to the ionic model with Tl^{+}ions coordinated to $\mathrm{As}_{2} \mathrm{~S}_{4}$ - ligand groups; the Tl^{+}ions being preferentially attracted toward the electron-rich areas of the ligands, i.e. toward the lone pair electrons on the S atoms. The $\mathrm{Tl}-\mathrm{S}$ distances for the structure range over values similar to those reported for what is assumed to be Tl^{+}coordinated with S in $\mathrm{Tl}_{2} \mathrm{~S}$ and TlS , and the average value for the closer bonds is similar to the expected bond distance for such a model, obtained from the sum of the ionic radius of $\mathrm{Tl}^{+}(1.40 \AA)$ and the van der Waals' radius of $S(1.85 \AA)$. The large variation in the nearest $\mathrm{Tl}-\mathrm{S}$ distances could be ascr bed either to variation in the disposition of the lone pair orbita's on the S atoms or to the polarizability of the relatively large Tl^{+}ions.

However, the $\mathrm{Tl}-\mathrm{C}$ bonding in the compound $\mathrm{TlC}_{5} \mathrm{H}_{5}$ has been shown to be largely covalent (Shibata, Bartell and Gavin, 1964)
and good arguments can be advanced in favor of the $\mathrm{Tl}-\mathrm{S}$ bonding in lorandite being largely covalent in character also. The principal features suggesting covalency are the small difference in the electronegativities of Tl (1.8) and $\mathrm{S}(2.5)$ and the short $\mathrm{Tl}-\mathrm{Tl}$ distances, suggestive of bonding interactions between the Tl atoms. The $\mathrm{Tl}-\mathrm{Tl}$ distance in crystalline Tl is $3.457 \AA$ (Barrett and Massalski, 1966) so that the short $\mathrm{Tl}(2)-\mathrm{Tl}(2)$ distance in lorandite represents a bond number approaching unity. It is clear from the earlier discussion that $\mathrm{Tl}-\mathrm{Tl}$ interactions are very common in compounds of Tl with group Vl elements. A closer analogy for the present purpose is tetrameric thallium methoxide $\left(\mathrm{TlOCH}_{3}\right)_{4}$ in which the O is coordinated tetrahedrally to three Tl and one CH_{3} group giving intramolecular $\mathrm{Tl}-\mathrm{Tl}$ distances of $3.84 \AA$ (Dahl, Davis, Wampler and West, 1962). In the covalent model, then, recognizing the apparent fivefold coordination of Tl , each Tl would form $s p^{3} d_{x^{2}-y^{2}}$ square-pyramidal hybrid orbitals to bond with the $s p^{3}$ hybrid orbitals on the S atoms. The two (original $6 s^{2}$) electrons residing on each Tl would be distributed in different ways, partly occupying antibonding orbitals to the squarepyramidal σ orbitals, effective to different extents in each internuclear direction to explain the variation in $\mathrm{Tl}-\mathrm{S}$ bond lengths, and partly occupying a low-lying $6 d$ or $7 s$ orbital for interaction with neighboring Tl atom(s) or for more feeble interactions with more distant S and As atoms.

Acknowledgement

This work was supported by an NRC Operating Grant.

References

C. S. Barrett and T. B. Massalski (1966), Structure of metals, 3rd ed., p. 631, McGraw-Hill, New York.
F. A. Cotton and G. Wilkinson (1966), Advanced inorganic chemistry, 2nd ed., p. 521, Interscience Publishers, New York.
D. T. Cromer (1965), Anomalous dispersion corrections computed from selfconsistent field relativistic Dirac-Slater wave functions. Acta Crystallogr. 18, 17-23.
D. T. Cromer and J. B. Mann (1968), X-ray scattering factors computed from numerical Hartree-Fock functions. Acta Crystallogr. A24, 321-323.
L. F. Dahl, G. L. Davis, D. L. Wampler and R. West (1962), The molecular and crystal structure of thallium(1) methoxide. J. Inorg. Nucl. Chem. 24, 357-363.
Dana's System of mineralogy (1946), 7 th ed., Vol. 1, p. 438, John Wiley, New York.
H. Hahn und W.Klingler (1949), Röntgenographische Beiträge zu den Systemen Thallium/Schwefel, Thallium/Selen und Thallium/Tellur. Z. anorg. Chem. 260, 110-119.
W. C. Hamilton (1965), Significance tests on the crystallographic R factor. Acta Crystallogr. 18, 502-510.
W. Hofmann (1933), Strukturelle und morphologische Zusammenhänge bei Erzen vom Formeltyp ABC_{2}. Fortschr. Min. 17, 44-47.
J. A. A. Ketelaar und E. W. Gorter (1939), Die Kristallstruktur von Thallosulfid ($\mathrm{T}_{2} \mathrm{~S}$). Z. Kristallogr. 101, 367-375.
C. R. Knowles (1965), A refinement of the structure of lorandite, TlAsS 2. Abstract, Amer. Crystallogr. Assoc. Meeting, Gatlinburg, Tenn., p. 79.
F. Marumo and W. Nowacki (1967), The crystal structure of hatchite, PbTlAgAs ${ }_{2} \mathrm{~S}_{5}$. Z. Kristallogr. 125, 249-265.
J. de Meulenaer and H. Tompa (1965), The absorption correction in erystal structure analysis. Acta Crystallogr. 19, 1014-1018.
Shuzo Shibata, L. S. Bartell and R. M. Gavin, Jr. (1964), Molecular structure and bonding of $\mathrm{InC}_{5} \mathrm{H}_{5}$. J. Chem. Physics 41, 717-722.
Y. Takeuchi and M. Ohmasa (1968), The crystal structure of wallisite, $\mathrm{PbTlCuAs} \mathrm{S}_{5}$, the Cu analogue of hatchite, $\mathrm{PbTlAgAs} \mathrm{s}_{2} \mathrm{~S}_{5}$. Z. Kristallogr. 127, 349-365.
Y. Takeuchi and R. Sadanaga (1969), Structural principles and classification of sulfosalts. Z. Kristallogr. 130, 346-368.
A. Zemann und J. Zemann (1959), Zur Kenntnis der Kristallstruktur von Lorandit, TlAsS_{2}. Acta Crystallogr. 12, 1002-1006.

